摘要
通过数值研究和仿真,分析了Rssler方程在不同相空间上吸引子特性和稳定性,利用分岔图和Lyapunov指数谱分析了分岔参数变化时系统的复杂非线性动力学行为。通过局部放大的分岔图验证了系统由倍周期分岔通向混沌的过程,揭示了系统内禀的复杂性。
We analyzed the character and stability of the chaotic attractor of Rōssler system in different phase spaces. The complex nonlinear behavior was concentrated on by bifurcation diagrams and Lyapunov exponents with the change of bifurcation parameter. And the route from periodic--doubling to chaos was demonstrated by local enlarged bifurcation diagrams.
出处
《齐齐哈尔大学学报(自然科学版)》
2006年第4期29-32,共4页
Journal of Qiqihar University(Natural Science Edition)
基金
甘肃省自然科学基金资助项目(3ZS042-B25-049).