期刊文献+

Sylow子-群的正规化子具有一定性质的有限群的结构

Structure of Some Finite Groups with Certain Normalizers of Sylow Subgroups
下载PDF
导出
摘要 对子群的正规化子具有一定性质的有限可解群的结构进行了探讨,获得了2个主要结果:可解群G是幂零群当且仅当对p∈π(G),NG(Gp)为p-幂零群;给出了可解群G的部分给定指数的Sylow子-群的正规化子是幂零群的G结构. The structure of finite groups with certain normalizers of sylow subgroups is characterized. Two main results are obtained : ( 1 ) A soluble group G is nilpotent group if and only if A↓p∈π(G), Nc (Gp) is a p-nilpotent group. (2)The structure of finite soluble groups with some nilpotent normalizers of Sylow subgroups is discussed.
作者 刘玉凤
出处 《烟台大学学报(自然科学与工程版)》 CAS 2006年第4期242-244,272,共4页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10171086)
关键词 有限群 Sylow-子群 正规化子 幂零群 finite group Sylow subgroup normalizer nilpotent group
  • 相关文献

参考文献7

  • 1Bianchi M, Mauri A G B, Hauck P. On finite groups with nilpotent Sylow normalizers[J]. Arch Math,1986, 47 (2) : 193-197.
  • 2Zhang J. Sylow numbers of finite groups[J]. J Algebra, 1995, 176(2) :111-123 .
  • 3刘玉凤.准素子群正规化子有素数幂指数的有限群[J].徐州师范大学学报(自然科学版),2003,21(3):11-14. 被引量:4
  • 4刘玉凤,王路平.具有给定指数的有限群[J].烟台大学学报(自然科学与工程版),2004,17(3):188-190. 被引量:1
  • 5徐明曜.有限群导引[M].北京:科学出版社,1999.54-61.
  • 6Hall P. Theorem like Sylow' s[J]. Proc Cambridge Phil Soc, 1956,6(3) :286-304.
  • 7Kegel O H. The structure of finite supersoluble groups[J]. Math Z, 1965,87(3) :42-48.

二级参考文献11

  • 1郭文彬.具有给定Sylow子群正规化子性质的有限群[J].数学年刊(A辑),1994,1(6):627-631. 被引量:7
  • 2Guo W. Finite groups with given indices of normalizers of Sylow subgroups[J]. Siberian Mathematical Journal, 1996,39: 253.
  • 3Huppert B.Endliche Gruppen I[M].Berlin:Springer-Verlag,1979.
  • 4Doerk K, Haekes T. Finite Soluble Groups[M]. Berlin :Walter de Gruyter, 1992.
  • 5Monakhov V S, Sel'Kin M V, Gribovskaya E E. On soluble normal subgroups of finite groups [J].Ukrainskii Math , 2002,54: 950.
  • 6Gribovskaya E E, Monakhov V S. Finite groups with indices of maximal subgroups not divsible by p4 [J].Arch Math , 2000,76:287.
  • 7Zhang J. Sylow numbers of finite groups [J]. J Algebra , 1995,176: 111.
  • 8Kondrat'ev A S. A criterion for 2-nilpotency of finite groups[A]. Subgroup Structure of Groups[C].Sverdlovsk: 1988, 82.
  • 9Guo Wenbin. Finite groups with given indices of normalizers of Sylow subgroups[J] 1996,Siberian Mathematical Journal(2):253~257
  • 10V. Fedri,L. Serena. Finite soluble groups with supersoluble Sylow normalizers[J] 1988,Archiv der Mathematik(1):11~18

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部