期刊文献+

基于神经网络预报的烧结矿化学成分控制专家系统 被引量:8

Expert system for controlling sinter chemistry based on neural network prediction
下载PDF
导出
摘要 采用带动量项的线性再励自适应变步长BP神经网络算法,建立了基于多周期运行模式的烧结矿化学成分预报模型;使用基于数据库技术的知识库和正向推理的推理机,开发了化学成分控制专家系统.系统自投入运行以来,预报模型命中率稳定在90%以上,操作指导建议采纳率达到92%,实现了对烧结矿化学成分的稳定控制. A sintering predictive model of chemical composition based on many periods was developed by the BP neural network algorithm with appending momentum and adaptive variable step size linear reinforcement. Using knowledge base that was based on database technology and illation with forward inference, an expert system was designed for controlling sinter chemistry. Since the system was plunged into application, the hit ratio of the predictive model is over 90% steadily, and the acceptance of operation suggestion is 92 %. The goal of controlling chemical composition steadily is actualized.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2006年第9期867-870,共4页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金 上海宝钢集团公司联合资助项目(No.50374080) 中南大学研究生教育创新工程基金资助项目(No.042310011)
关键词 烧结矿 化学成分 BP模型 知识库 专家系统 sinter chemical composition BP model knowledge base expert system
  • 相关文献

参考文献8

二级参考文献5

  • 1王永庆.专家系统WMES的研究与实现[J].微机发展,1994,4(6):14-17. 被引量:3
  • 2R R Hoffman.A survey of methods for eliciting the knowledge of experts[J].SIGART Newsletter, 1998; 108 : 19-27.
  • 3D V Pigford,G Baur.Expert System for business:concepts and application[M].Danvers, MA: Boyd and Fraser, 1995.
  • 4Sumit sarin.Oralce DBA Tips & techniques[M].McGraw-Hill,2000.
  • 5F. Patisson,J. P. Bellot,D. Ablitzer. Study of moisture transfer during the strand sintering process[J] 1990,Metallurgical Transactions B(1):37~47

共引文献90

同被引文献117

引证文献8

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部