期刊文献+

自适应模糊支持向量机算法 被引量:4

An Adaptive Fuzzy Support Vector Machine Algorithm
下载PDF
导出
摘要 支持向量机算法对噪声和异常点是敏感的,为了克服这个问题,人们引入了模糊隶属度。传统确定样本模糊隶属度的方法,都是基于原始空间的。文章提出了基于特征空间的模糊隶属度函数模型。在该模型中,以特征空间中的样本为中心,以给定的距离d为半径作超球,根据其它样本落到超球内的个数来确定中心样本点的模糊隶属度。并将新的模糊隶属度模型引入自适应支持向量机,提出了模糊自适应支持向量机算法。实验结果表明,该模型能有效地提高自适应支持向量机的抗噪能力和预测精度。 Support Vector Machine (SVM) is sensitive to the noises and outliers.To overcome this drawback,fuzzy membership function is introduced,which is based on the primal space in the traditional method.In this paper,a novel fuzzy membership function model is presented based on the feature space.In this model,a hypersphere is firstly determined for each sample in the feature space,whose center is this sample and radius d is given ahead.And then the fuzzy membership is determined based on the number of samples locating in the hypersphere.Introducing the novel fuzzy membership model into Adaptive Support Vector Machine (ASVM),we propose an Adaptive Fuzzy Support Vector Machine algorithm (AFSVM),Experimental results show that the AFSVM algorithm is valid for improving the anti-noise capacity and the predicting accuracy of the ASVM.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第27期53-56,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:10471045 60433020) 广东省自然科学基金资助项目(编号:970472 000463 04020079) 霍英东基金资助项目(编号:91005) 教育部人文社科基金资助项目(编号:2005-241) 广东省科技攻关项目(编号:2005B10101010) 广州市天河区科技攻关项目(编号:051G041) 华南理工大学自然科学基金资助项目(编号:D76010 B13-E5050190)
关键词 支持向量机 最小二乘支持向量机 自适应迭代 模糊隶属度 Support Vector Machine,least squares support vector machine,adaptive iteration,fuzzy membership
  • 相关文献

参考文献11

  • 1V N Vapnik.The nature of statistical learning theory[M].New York:Springer-Verlag,2000
  • 2J A K Suykens,J Vandewalle.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999;9(3):293~300
  • 3S Yu,X W Yang,Z F Hao et al.An Adaptive Support Vector Machine Learning Algorithm for Large Classification Problem[C].In:3rd International Symposium on Neural Networks,ISNN 2006-Advances in Neural Networks,2006:981~990
  • 4C J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998 ;2(2):1~47
  • 5X G Zhang.Using class center vectors to build support vector machines[C].In:Neural Networks for Signal Processing Ⅸ-Proceedings of the 1999 IEEE Workshop,Wisconsin:IEEE,1999:33~37
  • 6I Guyon,N Matic,V N Vapnik.Discovering Information Patterns and Data Cleaning[M].Cambridge:MIT Press,1996
  • 7C F Lin,S D Wang.Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002; 13 (2):464~471
  • 8C F Lin,S D Wang.Fuzzy support vector machines with automatic membership setting[J].StudFuzz,2005; 177:233~254
  • 9H P Huang,Y H Liu.Fuzzy support vector machines for pattern recognition and data mining[J].International Journal of Fuzzy Systems,2002;4(3):3212
  • 10J A K Suykens,J De Brabanter,L Lukas et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002 ;48 (1-4):85~105

同被引文献30

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部