期刊文献+

复杂网络度分布特征研究 被引量:6

Degree Distribution of Complex Networks
下载PDF
导出
摘要 考察了复杂网络的不同模型,研究了在节点度总数不变条件下产生无标度现象的可能性。通过对OW S(择优W S)模型的提出和仿真,肯定了择优机制对形成网络节点度渐近分布特征的作用,并进一步指出,网络演化中进出择优机制的差异可能对其度分布特征产生重要影响。 Different models of free-scale networks are investigated, and the emerging possibility of freescale phenomenon in the networks is analyzed under the condition that the degree sum of all nodes is constant. The study indicates the simulation on OWS (optimal WS) model agrees with the optimal mechanism shows free-scale phenomenon. The difference between in-and out-mechanisms can affect the degree distribution in the networks.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2006年第3期13-16,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(70371019) 广西自然科学基金资助项目(0640068)
关键词 度分布 WS模型 仿真 复杂性网络 degree distribution WS model simulation complex networks.
  • 相关文献

参考文献10

  • 1NEWMAN M E J.The Structure and Function of Complex Networks[J].Society for Industrial and Applied Mathematics,2003,45 (2):167-256.
  • 2AMARAL L A N,SCALA A,BARTHELEMY M,et al.Classes of small-world networks[C]//USA:Proc Natl Acad Sci,2000:11149-11152.
  • 3ALBERT R,BARABáSI A L.Topology of Evolving Networks:Local Events and Universality[J].Physical Review Letters,2000,85 (24):5234-5237.
  • 4COOPER C,FRIEZE A,VERA J.Random deletion in a scale free random graph process[J].Internet Math,2004,26(1):463-483.
  • 5YOOK S H,JEONG H,BARABáSI A L.Weighted Evolving Networks[J].Physical Review Letters,2001,86 (25):5835-5838.
  • 6AIELLO W,CHUNG F,LU L.A Random Graph Model for Massive Graphs[C]//New York:ACM Sympceium on the Theory and Computing,2000,171-180.
  • 7王治国,王利,刘广钟.基于Internet的Agent并行计算[J].广西师范大学学报(自然科学版),2003,21(A01):156-159. 被引量:6
  • 8BARABASI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286(15):509-512.
  • 9章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 10COOPER C,FRIEZE A.A general model of web graph[C]//Denmark:Proceedings of 9th Europen Symposium on Algorithms,2001:500-511.

二级参考文献24

  • 1Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics,2002,74(1):47~97.
  • 2Dorogovtsev S N,Mendes J F F. Evolution of Networks[J]. Advances in Physics, 2002,51(4):1079~1187.
  • 3Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003,45(2): 167~256.
  • 4Erdos P,Rényi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hunga- rian Academy of Sciences,1960,5:17~61.
  • 5Watts D J, Strogatz S H. Collective dynamics of ′small-world′ networks[J]. Nature, 1998,393: 440~442.
  • 6Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286: 509~512.
  • 7Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272:173~187.
  • 8Dorogovtsev S N,Mendes J F F,Samukhin A N.Structure of growing networks with preferential linking[J].Physical Review Letters, 2000,85(21): 4633~4636.
  • 9Krapivsky P L,Redner S,Leyvraz F. Connectivity of growing random networks[J]. Physical Review Letters,2000,85(21):4629~4632.
  • 10Dorogovtsev S N, Mendes J F F, Samukhin A N. Size-dependent degree distribution of a scale-free network[J]. Physical Review E, 2001,63(6): 062101.

共引文献20

同被引文献80

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部