期刊文献+

L-凸空间的一个极大极小不等式及应用

A minimax inequality in L-convex spaces and it application
下载PDF
导出
摘要 运用L-凸空间中的一个极大极小不等式,对L-凸空间中的抽象变分不等式和似变分不等式解的存在性,Ky Fan型截口定理,以及具有扰动的二人零和博弈和多人非合作博弈均衡的存在性进行研究,从而得到没有线性结构的L-凸空间中一些新的抽象变分不等式和似变分不等式解的存在性结果和一个Ky Fan型截口定理.最后得到了一个具有扰动的二人零和博弈和一个多人非合作博弈的均衡存在性结果.计算结果与其他相关结果相比,条件是比较弱的. By using a minimax inequality in L-convex spaces, an analysis is made on the existence of the solutions to abstract variational inequality and variational-like inequality, the Ky Fan section theorem, and the equilibrium existence of perturbed zero-sum game for two persons and non-cooperative game for multiple players in L-convex spaces. As a conclusion, some new results about the existence of the solutions to abstract Variational inequality and variational-like inequality and a Ky Fan section theorem in L-convex spaces without linear structure are drawn, and the result of the equilibrium existence of perturbed zero-sum game for two persons and non-cooperative game for multiple players are finally obtained. The conditions of the results in this paper are weak as compared with those in other literatures.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期592-595,共4页 Journal of Hohai University(Natural Sciences)
基金 水利部科技创新资助项目(SCX2001-02) 江苏省教育厅高校科研项目经费资助项目(01KJD110003)
关键词 极大极小不等式 变分不等式 KY Fan型截口定理 非合作博弈 零调集 集值映射 minimax inequality variational inequality Ky Fan section theorem non-cooperative game acyclic set setvalued mapping
  • 相关文献

参考文献8

  • 1AUBIN J P, EKELAND I. Nonlinear functional analysis[M]. New York:John Wiley & Sons, 1984:110-111.
  • 2YUAN X Z. KKM theory and applications in nonlinear analysis[M]. New York: Dekker, 1999:201-235.
  • 3LU Hai - shu, ZHANG Ji - hui. Minimax inequalities in the spaces without linear structure [J]. Taiwan Residents J Math, 2004,8 (4) : 703-712.
  • 4LU Hai - shu, TANG De - shan. An intersection theorem in L - convex spaces with applications [J]. J Math Anal Appl, 2005,312 (1) : 343 - 356.
  • 5TIAN G Q. Generalization of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity[J]. Math Anal Appl, 1992,170 (2) :457-471.
  • 6陆海曙,唐德善.KKM定理在L-凸空间中的推广及其应用[J].南京大学学报(数学半年刊),2005,22(2):275-285. 被引量:1
  • 7BARDARO C, CEPPITELLI R. Some further generalizations of the Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities[J]. Math Anal Appl, 1988,132 (3) :484-490.
  • 8TAN K K. G - KKM theorems, minimax inequalities and saddle points[J]. Nonlinear Ana, 1997,30 (7) : 4151-4160.

二级参考文献12

  • 1Fan K. A Generalization of Tychonoff's Fixed Point Theorem. Math. Ann, 1961, 142: 305-310.
  • 2Fan K. Some Properties of Convex Sets Relation to Fixed Point Theorems. Math. Ann, 1984, 266:519-537.
  • 3Shih M H. Covering Properties of Convex Sets. Bul. London Math. Soc, 1986, 18: 57-59.
  • 4Dai Ansun. Generalized KKM Theorem on H-Space. J. Nanjing University (Natural Sciences Edition), 1994, 1: 6-11.
  • 5Tan K K. G - KKM Theorems, Minimax Inequalities and Saddle Points. Nonlinear Anal. TMA,1997, 30(7): 4151-4160.
  • 6Ben-Ei-Mechaiekh H, Chebbi S, Forenzano M and Linares J. V. Abstract Convexity and Fixed Points. J. Math. Anal. Appl, 1998, 222: 138-150.
  • 7Zhang J H. General Strongly Nonlinear Variational Inequalities for Multifunctions. Appl. Math.Lett, 1995, 8: 75-80.
  • 8ZhangJ H and Ma R Y. Minimax Inequalities of Ky Fan. Appl. Math. Lett, 1998, 11(6): 37-41.
  • 9Ding X P. Generalized L-KKM Type Theorems in L-Convex Spaces with Applications. Computers Math. Applic, 2002, 43: 1249-1256.
  • 10Ding X P. Generalized G-KKM Theorems in Generalized Convex Spaces and their Applications.J. Math. Anal. Appl, 2002, 266: 21-37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部