期刊文献+

室温下甲基丙烯酸缩水甘油酯的原子转移自由基溶液聚合反应 被引量:4

Atom Transfer Radical Polymerization of Glycidyl Methacrylate in Solution System at Room Temperature
下载PDF
导出
摘要 以2-溴代丙酸乙酯为引发剂,溴化亚铜为催化剂,2,2′-联吡啶为配体,采用溶液聚合体系,实现了甲基丙烯酸缩水甘油酯(GM A)的原子转移自由基聚合(ATRP),制得了窄分子量分布的均聚物PGM A;用FT-IR1、H-NM R、GPC等手段对活性聚合进行了确认,对PGM A进行了表征;考察了溶剂极性与单体/引发剂配比对可控聚合的影响;并进行了动力学研究,测定了GM A原子转移自由基聚合的表观活化能。研究表明,溶剂极性对GM A的ATRP可控聚合有较大的影响;单体/引发剂配比对聚合速率也有明显的影响;实验测得GM A的ATRP可控聚合的表观活化能为61.4 kJ/m o l。 The homogeneous controlled free radical polymerization of glycidyl methacrylate (GMA) by atom transfer radical polymerization (ATRP) was investigated using ethyl 2-bromopropionate as initiator and CuBr/bpy as catalysis with open solution polymerization system at ambient temperature, and PGMA with relatively narrow polydispersities was obtained. PGMA was characterized and the living polymerization was validated by GPC, FT-IR and 1^H-NMR. The effect of the concentration ratio of monomer to initiator and the polarity of solvents were examined, and the dynamics study was carried out. The experimental results show that the controlled polymerization of GMA at ambient temperature by ATRP can be realized preferably. When anisole with weaker polarity than cyclohexanone is used as solvent, the polymerization rate is obviously slow. The effect of the concentration ratio of monomer to initiator on the polymerization rate is distinct, and the smaller is the ratio, the faster is the rate. The apparent activation energy of ATRP for GMA using BRA/CuBr/bpy as initiation -catalysis was determined to be 61.4 kJ/mol.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2006年第5期62-65,共4页 Polymer Materials Science & Engineering
基金 山西省自然科学基金(940406)资助项目
关键词 原子转移自由基聚合 甲基丙烯酸缩水甘油酯 溶剂极性 聚合动力学 表观活化能 atom transfer radical polymerization glycidyl methacrylate solvent polarity kinetics of polymerization apparent activation energy
  • 相关文献

参考文献9

  • 1Yu W H,Kang E T,Neoh K G.Langmuir,2004,20:8294~8300.
  • 2Wanga W,Griffithsa R M,Naylora A,et al.Polymer,2002,43:6653~6659.
  • 3Kenawy E R,Abdel-Hay F I,El-Shanshoury A E R R,et al.Journal of Controlled Release,1998,50:145~152.
  • 4Paredes B,González S,Rendueles M,et al.Separation and Purification Technology,2004,40:243~250.
  • 5Nanjundan S,Unnithan S C,Selvamalar J C S,et al.Reactive & Functional Polymers,2005,62:11~24.
  • 6Wu S,Kang E T,Neoh K G,et al.Macromolecules,1999,32:186~193.
  • 7Krishnan R,Srinivasan K S V.Macromolecules,2003,36:1769~1771.
  • 8Hunter T C,Price G J.Polymer,1994,35:3530~3534.
  • 9Reichardt C.Chemical Reviews,1994,94:2319~2358.

同被引文献46

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部