期刊文献+

无约束极值条件的一个证法

Proof for the unconstrained extremum conditions
原文传递
导出
摘要 无约束极值条件是最优化理论的重要组成部分,在理论上和实践上都有重要意义,约束问题的最优性条件是它的逻辑推广,解约束最优化问题的一种策略是解一系列无约束问题。本文首先介绍Rayleigh商定理,然后利用Rayleigh商定理给出无约束极值条件新的严格证明。这种方法比已有证法更简明,对那些不熟悉序列极限理论的读者,在学习和掌握最优化理论方面,有一定的实际意义。 The unconstrained extremum conditions are the important parts of optimization theory, and have certain significance in the theory and practice. The optimality conditions for constrained problems become a logical extension of the conditions for unconstrained problems. One strategy for solving a constrained problem is to solve a sequence of unconstrained problems. In this paper, the theorem of Rayleigh quotient is introduced at first, then by use of it, a new rigorous proof for an unconstrained extremum condition is given. This proof is more concise than the old one, and it has considerably practical value in learning and grasping the optimization theory for those readers who are not familiar with the theory of limit of sequence.
作者 陈宝林
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 1996年第2期75-78,共4页 Journal of Tsinghua University(Science and Technology)
基金 清华大学理学院基金
关键词 无约束问题 极值条件 局部极小点 unconstrained problem extremum condition local minimum point
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部