摘要
对占线中心选址问题的竞争比进行了研究。对度量空间占线中心选址问题,本文证明该问题的下界是2-n-n n-2-13n+3,其中n为空间点的个数,该结果要优于已有的结果2-n-21。对一般空间上的占线中心选址问题,本文证明了竞争比的下界是(n-2)Δ+2((nn--21))2Δ2+4(n-2),其中Δ是所给空间最大的相对距离,并证明一般空间上的占线中心选址问题不存在常数竞争算法。
This paper studies the competitive ratio of online median problem. For the case being the metric space, we prove the lower bound is 2-(n-√n^2-3n+3/n-1), where n is the number of points in the space. This result is better than the existed result 2-(2/n-1).For the case being the common space, this paper proves the lower bound is ((n-2)△+√(n-2)^2△^2+4(n-2))/2(n-1),where △ is the maximal comparative ratio of points distances. We also prove that there's no constant competitive ratio algorithm for this case.
出处
《系统工程》
CSCD
北大核心
2006年第8期98-101,共4页
Systems Engineering
基金
国家自然科学基金资助项目(1037109470471035)
国家杰出青年基金资助项目(70525004)
博士点基金资助项目(20050698048)
关键词
运筹学
选址问题
占线中心
竞争比
Operational Research
Facility Location Problem
Online Median, Competitive Ratio