期刊文献+

脉冲耦合神经网络在指纹图像分割中的应用 被引量:6

Research on fingerprint image segmentation based on pulse coupled neural networks
下载PDF
导出
摘要 脉冲耦合神经网络(PCNN)是20世纪90年代形成和发展的一种新型神经网络.研究发现,可用PCNN的脉冲传播特性有效地解决图像处理中的不同问题.在此阐述了PCNN的原理,并提出一种基于PCNN的指纹图像分割算法,该算法有很强的适应性和抗噪性. Pulse coupled neural network(PCNN) is a new neural network, which was developed and formed in the 1990' s. The research shows that the pulse transmission feature of PCNN is able to perform different image processing. This paper describes the principle of PCNN, and brings forward a segmentation algorithm of fingerprint image based on PCNN, which has a strong adaptability and robustness of noise.
出处 《应用科技》 CAS 2006年第10期25-27,共3页 Applied Science and Technology
关键词 指纹图像分割 脉冲耦合神经网络 算法 fingerprint image segmentation PCNN algorithm
  • 相关文献

参考文献5

  • 1ECKHORN R, REITBOECK H J, ARNDT M,et al. Feature linking via synchronization among distributed assemblies:Simulation of results from cat cortex [ J ]. Neural Computation, 1990,2( 3 ) :293 - 307.
  • 2JOHNSON J L,PADGETF M L. PCNN models and applications [ J ]. IEEE Trans on Neural Networks, 1999,10 ( 3 ) :480 - 498.
  • 3KUNTIMAD G, RANGANATH H S. Perfect image segmentation using pulse coupled neural networks[ J ]. IEEE Trans on Neural Networks, 1999,10(3 ) :591 - 598.
  • 4JCAUFIELD H, KINSER J M. Finding shortest path in the shortest time using PCNN' s[J]. IEEE Trans on Neural Networks, 1999,10( 3 ) :604 - 606.
  • 5顾晓东,郭仕德,余道衡.一种基于PCNN的图像去噪新方法[J].电子与信息学报,2002,24(10):1304-1309. 被引量:36

二级参考文献11

  • 1R.P. Broussard, S. K. Rogers, M. E. Oxley, et al., Physiologically motivated image fusion for object detection using a pulse coupled neural network, IEEE Trans. on Neural Networks, 1999,10(3), 554-563.
  • 2X. Liu, D. L. Wang, Range image segmentation using a relaxation oscillator networks, IEEE Trans. on Neural Networks, 1999, 10(3), 564-573.
  • 3J.M. Kinser, Foveation by a pulse-coupled neural network, IEEE Trans. on Neural Networks,1999, 10(3), 621 625.
  • 4J.L. Johnson, M. L. Padgett, PCNN models and applications, IEEE Trans. on Neural Networks,1999, 10(3), 480-498.
  • 5H. Jcaufield, J. M. Kinser, Finding shortest path in the shortest time using PCNN's, IEEE Trans.on Neural Networks, 1999, 10(3), 604-606.
  • 6H.S. Ranganath, G. Kuntimad, Object detection using pulse coupled neural networks, IEEE Trans. on Neural Networks, 1999, 10(3), 615-620.
  • 7Derek M. Wells, Solving degenerate optimization problems using networks of neural oscillators,Neural networks, 1992, 5(6), 949 959.
  • 8R. Eckhorn, H. J. Reitboeck, M. Arndt, et al., Feature linking via synchronization among distributed assemblies: Simulation of results from cat cortex, Neural Computation., 1990, 2(3),293-307.
  • 9R. Eckhorn, A. Frien, R. Bauer, et al., High frequency oscillations in primary visual cortex of awake monkey. Neuroreport, 1993, 4(3), 243-246.
  • 10J. L. John, D. Ritter, Observation of periodic waves in a pulse-coupled ne ural network. Opt.Lett., 1993, 18(15), 1253-1255.

共引文献35

同被引文献60

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部