摘要
运用Schauder不动点定理,考察了边值问题Δ4u(k-1)=g(k,u(k-1),u(k),u(k+1),u(k+2)),k∈Z(1,N)u(0)=A,u(N+1)=B,u(N+2)=C,u(N+3)=D解的存在性.
Schauder fixed--point theorem is applied to study the existence of solutions for the boundary value problem
{△^4u(k-1)=g(k,u(k-1),u(k),u(k+1),u(k+2)),k∈Z(1,N) u(0)=A,u(N+1)=B,u(N+2)=C,u(N+3)=D
出处
《数学理论与应用》
2006年第3期15-18,共4页
Mathematical Theory and Applications