期刊文献+

原位TiC颗粒弥散强化普碳钢的磨损性能 被引量:12

Wear behavior of common straight carbon steels strengthened by in situ TiC dispersion
下载PDF
导出
摘要 研究了在磨粒磨损条件和不同载荷的油磨条件下,原位合成TiC弥散强化不同碳含量的普碳钢的磨损性能.结果表明,运用原位合成工艺可以制备出微米级的TiC颗粒弥散强化普碳钢,TiC颗粒在强化钢中分布均匀,与基体结合良好.加入TiC后,碳质量分数为0.55%和0.8%的普碳钢在油润滑磨损条件下耐磨性得到了很大的提高.当载荷为150 N时,TiC弥散强化钢的耐磨性能比相应的基体钢提高了近一个数量级,但随着载荷的加大,TiC颗粒对抗磨损的改善作用减弱.在碳质量分数大于1.0%的高碳钢中,引入TiC对材料性能的改善作用不如含碳量较低的碳钢显著.在以刚玉轮为摩擦副的磨粒磨损条件下,含碳质量分数为0.55%和0.8%的TiC弥散强化钢的耐磨性能比相应的基体钢分别提高了大约100%和50%.然而对碳质量分数为1.4%普碳钢,TiC的引入对耐磨损性能没有显著的改善作用. Under conditions of abrasive wear and oil lubricant wear with different loads the wear resistance of straight carbon steels with different carbon contents strengthened by in situ TiC dispersion was studied. Experimental results show that the distribution of TiC particles in the steels is uniform and the interfacial bonding between TiC reinforcement and steel matrix is strong. The effect of TiC addition on wear resistance of the carbon steels containing 0. 55% C and 0. 8% C is obvious under oil lubricant wear condition. Compared with the steels without TiC addition, the wear resistance of TiC strengthened steels are improved about 10 times under a load of 150 N. But, the effect of TiC addition on wear resistance is weakened with the increase of load. Compared with low carbon steels, the improvement effect of TiC addition in high carbon steels ( w ( C ) 〉 1.0 % ) is not so significant. Under abrasive wear condition, the wear resistance of carbon steels containing 0. 55 %0 C and 0. 8 % C are improved about 100% and 50% respectively with TiC addition. However, for the carbon steel containing 1.4% C, the improvement of wear resistance by TiC addition is insignificant.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第5期836-841,共6页 Journal of Southeast University:Natural Science Edition
关键词 原位合成 TiC弥散强化钢 油磨 磨料磨损 in situ TiC strengthened steel oil lubricant wear abrasive wear
  • 相关文献

参考文献9

  • 1Pagounis E,Lindroos V K.Processing and properties of particulate reinforced steel matrix composites[J].Materials Science and Engineering,1998,246A(1,2):221-234.
  • 2Kattamis T Z.Solidification processing and tribological behavior of particulate TiC-ferrous matrix composite[J].Material Science and Engineering,1990,128A(2):241-252.
  • 3孙建荣,孙扬善,闵学刚.TiC_P/3Cr13复合材料显微组织及耐磨性的研究[J].铸造,2001,50(1):25-28. 被引量:7
  • 4Wikdan Mohammed,Edrees H J,Hendry Alan.Ceramic matrix composites of zirconia reinforced with metal particles[J].Materials Chemistry and Physics,2002,75(1-3):276-283.
  • 5Tjong S C,Lau K C.Abrasivion resistance of stainless-steel composites reinforced with hard TiB2 particles[J].Composites Science and Technology,2000,60(8):1141-1146.
  • 6李伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料的研究现状与展望[J].铸造,2002,51(4):205-208. 被引量:35
  • 7孙扬善,薛烽,何华英,等.碳化钛增强了耐磨铝合金及其制备工艺:中国,ZL99114272.1[P].2002-02-20.
  • 8Mei Z,Yan Y W,Cui K.Effect of matrix composition on the microstructure of in situ synthesized TiC particle reinforced iron-based composite[J].Materials Letters,2003,57(21):3175.
  • 9克莱因,余永宁.金属复合材料导论[M].北京:冶金工业出版社,1996:158.

二级参考文献23

共引文献40

同被引文献136

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部