摘要
应用λ-截集将决策类中的模糊集合转换为普通集合,在此基础上推广了粗糙隶属函数,讨论了其中的一些集合理论性质,通过设定置信阈值参数α,提出了一种可以从粗糙模糊决策表中获取概率决策规则的扩展粗糙集方法,并设计了一种改进的快速约简算法,最后给出了该方法的一个算例.研究结果表明,提出的方法可从冗余的且有噪声的粗糙模糊决策表中获取用于指导实践的概率决策知识.
The fuzzy set in decision class is transformed into ordinary set by applying a λ-cut, based on which the rough membership function is generalized and some set theoretic properties are discussed. After a confident threshold value is set, an extension of rough sets model is proposed which can obtain probabilistic decision rules from rough-fuzzy decision tables. An improved quick reduct algorithm is also presented. Finally, the approach is illustrated by an example. The results show that the proposed approach can extract probabilistic decision knowledge to guide practice from roughfuzzy decision tables with redundant noisy data.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第5期842-846,共5页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(70473037)
江苏省博士后基金资助项目(苏人通[2005]255号)
江苏省自然科学基金重点资助项目(BK2003211)
关键词
粗糙模糊决策表
粗糙隶属函数
概率决策
rough-fuzzy decision tables
rough membership function
probabilistic decision