期刊文献+

Tchebichef矩的快速算法 被引量:3

Fast computation of Tchebichef moments
下载PDF
导出
摘要 为了更有效将Tchebichef矩应用于模式识别和图像分析等领域,提出一种关于Tchebichef矩的快速有效算法.对二值图像采用图像块描述方法,并在推导了Tchebichef多项式一些性质的基础上,实现了一种快速计算Tchebichef矩的新方法.实验结果表明,该方法能够有效地节省计算时间,尤其在图像尺寸较大,以及所使用矩的阶数较高的情况下,该算法的效果更为明显. To expand the application of the Tchebichef moments in the fields of pattern recognition and image analysis, a novel algorithm for fast computation of Tchebichef moments is presented. By using the image block representation to describe a binary image, and by establishing some useful properties of Tchebichef polynomials, an efficient method is proposed for computation of Tchebichef moments. Experimental results show that this method can save much CPU (central processing unit) time in the calculation of moments, especially in the case where the image size is large and the high order of moments is used.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第5期857-862,共6页 Journal of Southeast University:Natural Science Edition
基金 科学技术部基础研究重大资助项目(2003CB716102) 国家自然科学基金资助项目(60272045) 教育部新世纪优秀人才支持计划资助项目(NCET-04-0477)
关键词 Tchebichef正交矩 快速算法 图像块描述方法 Tchebichef moment fast algorithm image block representation
  • 相关文献

参考文献14

  • 1Hu M K.Visual problem recognition by moment invariant[J].IRE Trans Inform Theory,1962,8(2):179-187.
  • 2Prokop R J,Reeves A P.A survey of moment-based techniques for unoccluded object representation and recognition[J].Graphical Models Image Process,1992,54(5):438-460.
  • 3Haddadnia J,Faez K,Moallem P.Neural network based face recognition with moment invariants[C]//Proceedings of International Conference on Image Processing.Thessaloniki,Greece,2001,1:1018-1021.
  • 4Shu Huazhong,Luo Limin,Bao Xudeng,et al.An efficient method for computation of Legendre moments[J].Graphical Models,2000,62(4):237-262.
  • 5Shu Huazhong,Luo Limin,Yu Wenxue,et al.A new fast method for computing Legendre moments[J].Pattern Recognition,2000,33(2):341-348.
  • 6Zhou Jindan,Shu Huazhong.Two new algorithms for efficient computation of Legendre moments[J].Pattern Recognition,2002,35(5):1143-1152.
  • 7Chong Chee Way,Raveendran P,Mukundan R.A comparative analysis of algorithms for fast computation of Zernike moments[J].Pattern Recognition,2003,36(3):731-742.
  • 8Mukundan R,Ramakrishnan K R.Fast computation of Legendre and Zernike moments[J].Pattern Recognition,1995,28(9):1433-1442.
  • 9Gu Jia,Shu Huazhong,Toumoulin C,et al.A novel algorithm for fast computation of Zernike moments[J].Pattern Recognition,2002,35(12):2905-2911.
  • 10Mukundan R,Ong S H,Lee P A.Image analysis by Tchebichef moments[J].IEEE Trans Image Processing,2001,10 (9):1357-1364.

同被引文献27

  • 1章品正,王征,徐琴珍,舒华忠.二维Tchebichef矩正反变换的快速算法[J].信号处理,2007,23(1):69-72. 被引量:2
  • 2M. K. Hu. Visual pattern recognition by moment invariants[J]. IRE Inf. Theory, 1962, 8(1): 179-187.
  • 3R. Mukundan, S. H. Ong, P. A. Lee. Image analysis by Tchebichef moments[J]. IEEE Trans. Image Process. , 2001, 10(9) : 1357-1364.
  • 4P. T. Yap, P. Raveendran, S. H. Ong. Image analysis by Krawtchouk moments[J]. IEEE Trans. Image Process. , 2003, 12(11): 1367-1377.
  • 5M. R. Teague. Image analysis via the general theory of moments [J]. J. Opt. Soc. Am. , 1980, 70(8): 920-930.
  • 6Zhu Hongqing, Shu Huazhong, Xia Ting. Translation and scale invariants of Tchebichef moments[J]. Pattern Recogn., 2007, 40(2) : 2530-2542.
  • 7Mourad E. H. Ismail. Classical and Quantum Orthogonal Polynomials in One Variable [M]. Cambridge: Cambridge University Press, 2005: 195-217.
  • 8R. Mukundan. Some computational aspects of discrete orthogonal moments[J]. IEEE Trans. bnage Process. , 2004, 13(8): 1055-1059.
  • 9L. Comtet. Advanced Combinatorics: The Art of Finite and Infinite Expansions [M]. D. Dordrecht: Reidel Publishing Company, 1974:34-46.
  • 10Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing: Analysis and Machine Vision [M]. Toronto: Thompson Learning, 2008:354-356.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部