期刊文献+

H-arrow群与CoH-arrow群 被引量:1

H-ARROW-GROUP AND COH-ARROW GROUP
下载PDF
导出
摘要 给出了CoH-arrow群定理的逆定理,并且定义了H-arrow群,得到与CoH-arrow群对偶的定理.同时证明了若CoH-arrow同伦类有分别由CoH-arrow群乘法与H-arrow群乘法给出的两个群乘法,则这两个乘法相同且是可交换的. The converse theorem of the Coil - arrow group theorem is given, and the con- cept of H - arrow group is defined. Then a theorem dual with that of the Coil - arrow group is obtained. Meanwhile, it is proved that the multiplications on the homotopy classes de- fined by Coil -arrow group and H -arrow group are the same and commutative.
出处 《华南师范大学学报(自然科学版)》 CAS 2006年第3期37-41,共5页 Journal of South China Normal University(Natural Science Edition)
关键词 H-群 CoH-群 H-arrow群 CoH-arrow群 H - group Coil - group H - arrow group Coil - arrow group
  • 相关文献

参考文献3

  • 1SPANIER E H.Algebraic Topology[M].New York:MeGraw-Hill,1966:74-104.
  • 2PICCININI R A.Lectures on Homotopy Theory[M].New York:Elsevier Science Publishers,1992.
  • 3SWITZER R M.Algebraic Topology-Homotopy and Homology[M].New York:Springer-Verlag,1975.

同被引文献8

  • 1赵浩,沈文淮.M-纤维式纤维化的特征与诱导M-纤维式纤维化[J].数学杂志,2006,26(3):297-304. 被引量:1
  • 2Buhagiar D. A category of continuous maps[J]. RIMS Kokyuroku , 1999, 1107: 70 - 83.
  • 3Buhagiar D. The category MAP[C] //Memoirs of Faculty of Science and Engineering: Series B. Shimane, Matsue , Shimane University ,2001, 34: 1 - 19.
  • 4Hatcher A. Algebraic topology[M]. Cambridge: Cambridge Univiversity Press, 2001.
  • 5James I M. General topology and homotopy theory[M] . Berlin: Springer-Verlag, 1984.
  • 6James I M. Fibrewise topology[M]. Cambridge: Cambridge University Press, 1990.
  • 7Hotta T, Miwa T. A new approach to fibrewise fibrations and cofibrations[J] . Topology and Its Applications, 2002,122(112) :205 -222.
  • 8Crabb M,James I M. Fibrewise homotopy theory[M] . London: Springer-Verlag, 1998.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部