期刊文献+

基于响应面法的机翼气动/结构一体化优化设计研究 被引量:14

Research of aerodynamic-structure integrative optimization design of wing based on response surface methodology
下载PDF
导出
摘要 基于响应面法进行了机翼气动/结构一体化优化设计研究,流动控制方程为三维欧拉方程,采用有限体积法进行数值求解,应力和结构变形采用有限元方法计算,静气动弹性分析采用强耦合迭代方式,响应面模型采用二次多项式来构造。以跨音速M6机翼为初始机翼,进行了多目标、多约束情形下的气动/结构综合优化设计,优化后所得到的新机翼具有更佳的气动/结构综合性能,升阻比增加了9.25%,而重量减轻了4.84%;响应面模型精度满足设计要求,拟合误差均不超过1%;这说明本文所发展气动/结构综合优化设计方法是成功且有效的,具有广泛的应用前景。 In this paper , the method of aerodynamic-structure integrative optimization design of wing based on the Response Surface Methodology(RSM) is proposed. The governing equation is 3D Euler equations, which is solved by the finite volume method. The stress and the structural deformation is calculated by Finite Element Method(FEM) and the aeroelastic analysis is performed by Tight Coupling Method(TCM). The quadratic polynomials are employed to construct response surface model. M6 transonic wing is choosed as the base wing. Aerodynamic -structure integrative optimization design under multi-objective is performed. The results show that lift-to-drag ratio was increased 9.25 % and structural weight was reduced 4.84 %. The fitting error of response surface was less than 1%, which show that RSM was accurate enough to satisfy the engineering requirement. It can be concluded that the present method is effective and feasible, and is very attractive for muhidisciplinary optimization design due to its high design capability.
出处 《空气动力学学报》 EI CSCD 北大核心 2006年第3期300-306,共7页 Acta Aerodynamica Sinica
基金 国家自然科学基金资助项目(10402036) 航空科学基金资助项目(04A53005)
关键词 响应面法 欧拉方程 有限元方法 静气动弹性 多目标优化设计 Responsemulti-objective optimization Surface Methodology (RSM) Euler equation Finite Element Method (FEM) aeroelastics design
  • 相关文献

参考文献8

二级参考文献13

  • 1詹浩.考虑弹性变形影响的跨声速机翼气动设计研究:硕士学位论文[M].西安:西北工业大学,1997..
  • 2华俊.跨声速机翼和翼型的设计研究:博士学位论文[M].西安:西北工业大学,1989..
  • 3[1]Shyy W, Tucker P K, Vaidyanathan R. Response Surface and Neural Network Techniques for Rocket Engine Injector Optimization. In: AIAA/SAE/ASME/ASEE 35th Joint Propulsion Conference. 1999. Paper No.99-2455
  • 4[2]Papila N, Shyy W, Haftka R, et al. Assessment of Neural Net and Polynomial-Based Techniques for Aerodynamic Applications. In: AIAA 17th Applied Aerodynamics Conference. Norfolk, VA, 1999. Paper No. 99-3167
  • 5[3]Vaidyanathan R, Papila N, Shyy W, et al. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization. In: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. 2000. Paper No.2000-4880, Long Beach, CA
  • 6[4]Papila N, Shyy W, Griffin L, et al. Preliminary Design Optimization for a Supersonic Turbine for Rocket Propulsion. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000. Paper No.2000-3242, Huntsville, AL
  • 7[5]Madsen J I, Shyy W, Haftka R T. Response Surface Techniques for Diffuser Shape Optimization. AIAA Journal,2000, 38(9): 1512-1518
  • 8[6]Papila N, Shyy W, Griffin L, et al. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods. In: AIAA 39th Aerospace Sciences Meeting & Exhibit. 2001. Paper No.2001-1065
  • 9[7]Nateri K Madavan, Man Mohan Rai, Frank W Huber. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance. NASA/TM-1998-208754
  • 10[8]S Pierret, R A Van den Braembussche. Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network. ASME Journal of Turbomachinery,1999, 121:326-332

共引文献34

同被引文献145

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部