摘要
令D表示有界齐性Siegel域,G(D)是D的自同构群,g(D)是关于G(D)的李代数,则对g(D),S.Murakami得到下列直和:g(D)=g-1+g-1/2十g0十g1/2+g1其中g-1,g-1/2和g0是大家熟知的,本文我们给出g1/2和g1的构造.即在非常弱的条件下,我们证明了g1/2={0}和g1={∑P20K}.同时,我们给出一些Siegel域的例子,它们的自同构群可以显式给出.
Let D denote a bounded homogeneous Siegel domain, G (D) the group of automorphisms of D, and g (D) the Lie algebra associated to G (D), then for g (D), Shingo Murakami has got the direct sum (see 'Lecture Notes in Mathematics' 286):g (D) =g-1+g-1/2+g0+g1/2 +g1the g-1, g-1/2 and g0 are well known. In this paper, we describe the structure of g1/2 and g1, i. e.we prove that g1/2={0} and g1 = { P20k k} under some very weak conditions. In the meank=1time, we give some examples of Siegel domains, in which the groups of automorphisms are exactly given.
出处
《首都师范大学学报(自然科学版)》
1996年第2期1-24,共24页
Journal of Capital Normal University:Natural Science Edition
关键词
有界齐性Siegel域
自同构群
李群
李代数
bounded homogeneous Siegel domain, automorphisms group, Lie group, Lie algebra.