期刊文献+

改进的传染型余震序列模型

Limited Power Law Formula and Omori Law
下载PDF
导出
摘要 将有限幂律公式(LPL)应用到传染型余震序列模型(ETAS)中,并对原ETAS模型加以改进。以台湾集集地震早期余震序列为例,对原ETAS模型与改进的ETAS模型进行了对比分析,结果表明改进的ETAS模型要优于原ETAS模型。 Since the earliest afiershocks are always less frequent than predicted by the modified Omori law due to the purely physical causes of aftershock shortage, and since the Limited Power Law (LPL) formula performs better than the Omori law for the earliest aftershocks, this paper modifies the Epidemic Type Afiershock Sequence (ETAS) model for the aftershock rate by using the LPL formula in place of the modified Omori law. The parameters are estimated by the maximum likelihood method. The model is then applied to the Chi-Chi sequence and the resulting AIC values show that the new model performs better than the original ETAS model for the earliest aftershocks.
出处 《中国地震》 CSCD 北大核心 2006年第3期321-326,共6页 Earthquake Research in China
基金 国家自然科学基金资助项目(10371012 40574020和40134010)。
关键词 有限幂律公式 大森公式 ETAS模型 LPL Limited Power Law formula Omori law Epidemic Type Aftershock Sequence model
  • 相关文献

参考文献15

  • 1刘文兵,马丽.台湾集集和华北大同地震序列的定量模型分析[J].地震,2004,24(1):155-162. 被引量:6
  • 2庄建仓,马丽.主震和余震——从大森公式到ETAS模型[J].国际地震动态,2000,21(5):12-18. 被引量:14
  • 3Akaike H, 1974, A New Look at the Statistical Model Identification. IEEE Trans on Automatic Control, 19, 716 - 723.
  • 4Akaike H, 1977, On entropy maximization principle. In P. R. Krishnaish, (ed.), Applications of Statistics, Amsterdam: North- Holland, 27 - 41.
  • 5Harte D, 1998, Documentation for the statistical seismology library. School of Mathematical and Computing Sciences, VUW, Research Report, 10.
  • 6Healy J.H., Keilis-Borok V.l. Lee W.H.K, 1997, IASPEI Software Library, 6.
  • 7Ma L., Vere-Jones D, 1997, Application of M8 and Lin-Lin Algorithms to New Zealand Earthquake Data, New Zealand J. Geology. And Geophys,40, 77 - 89.
  • 8Narteau C., Shebalin P., Holsehneider M, 2002, Temporal Limits of the Power Law Aftershock Decay Rate. J. Geophys. Res., 107 (BI2), 2359.
  • 9Narteau C., Shebalin P., Hainzl S., et al, 2003, Emergence of a Band-limited Power Law in the Aftershock Decay Rate of a Sliderblock Model. Geophys. Res. Letters, 30(11), 1568.
  • 10Ogata Y, 1983, Estimation of the Parameters in the Modified Omofi Formula for Aftershock Frequencies by the Maximum Likelihood Procedure. J. Phys. Earth,31, 115-124.

二级参考文献30

  • 1宇津德治.地震の事典[M].朝仓书店,1987..
  • 2Ma L, Zhuang J C. Relative quiescence within jiashi swarm in Xinjiang, China.. An application of the ETAS point process model[J]. J Appl Probab, 2001, 38(A): 213-221.
  • 3Zhuang J C. Statistical modeling of seismicity patterns before and after the cape palliser earthquake[J]. New Zealand J of Geology & Geophysics, 1998, 47: 1-25.
  • 4Ogata Y, Akaike H, Katsura K. The application of linear intensity models to the investigation of causal relations between a point process and another point process[J]. Annals of the Institute of Statistical Mathematics, 1982, 40: 29-39.
  • 5Ogata Y. Statistical models for earthquake Occurrence and residual analysis for point process[J]. J Amer Stat Assoc, 1988, (83): 9-27.
  • 6Ogata Y. Statistical models for standard seismicity and detection of anomalies by residual analysis for point processes[J]. Tectonophysics, 1989, (83): 9-27.
  • 7Ogata Y. Detection of relative quiescence before great earthquake Occurrence, Through a statistical model[J]. J Geophys Res, 1992, (97): 19845-19871.
  • 8Ogata Y. Space-time point process models for earthquake Occurrence[J]. Ann Inst Stat Math,1998, (50) : 379-402.
  • 9Wang J H, Hwang R D, Huang B S, etal. The MsT. 6 Chi-Chi, Taiwan, earthquake of September 90, 1999[J]. Seismotectonics in Convergent Plate Boundary, 9002, 319-394.
  • 10Harte D. Documentation for the statistical seismology library[J]. School of Mathematical and Computing Sciences Research Report, 1998, 10.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部