摘要
本文讨论一类具有脉冲效应和周期系数的两个食饵一个捕食者的捕食-食饵系统的动力学行为.利用脉冲微分方程比较定理和乘子理论,证明了系统的有界性,讨论了平凡周期解和半平凡周期解的稳定性,利用重合度的理论给出了系统存在周期正解的充分条件.
In this paper,a classical periodic two prey and a predator predator-prey system with impulsive effect is investigated. The boundedness of system and the local stability of trivial or semi-trivial periodic solution are proved by using comparative theorem and multipli- ers theory of impulsive differential equation. A set of sufficient conditions are derived for the existence of at least one positive periodic solution,by using the method of coincidence degree.
出处
《应用数学》
CSCD
北大核心
2006年第4期749-758,共10页
Mathematica Applicata
关键词
脉冲效应
周期解
捕食-食饵系统
重合度
Impulsive effect
Periodic solutions Predator-prey system
Coincedence degree