期刊文献+

具有脉冲效应的周期三种群捕食-食饵系统

The Periodic Three-species Predator-prey System with Impulsive
下载PDF
导出
摘要 本文讨论一类具有脉冲效应和周期系数的两个食饵一个捕食者的捕食-食饵系统的动力学行为.利用脉冲微分方程比较定理和乘子理论,证明了系统的有界性,讨论了平凡周期解和半平凡周期解的稳定性,利用重合度的理论给出了系统存在周期正解的充分条件. In this paper,a classical periodic two prey and a predator predator-prey system with impulsive effect is investigated. The boundedness of system and the local stability of trivial or semi-trivial periodic solution are proved by using comparative theorem and multipli- ers theory of impulsive differential equation. A set of sufficient conditions are derived for the existence of at least one positive periodic solution,by using the method of coincidence degree.
作者 谭德君
机构地区 集美大学理学院
出处 《应用数学》 CSCD 北大核心 2006年第4期749-758,共10页 Mathematica Applicata
关键词 脉冲效应 周期解 捕食-食饵系统 重合度 Impulsive effect Periodic solutions Predator-prey system Coincedence degree
  • 相关文献

参考文献9

  • 1Brauer F, Soudack K C. Coexistence properties of some predator-prey systems under constant rate harvesting and stocking[J]. J. Math. Biol. , 1981,12:101-114.
  • 2Brauerd F,Soudack A C. Constant-rate stocking of predator-prey systems[J]. J. Math. Biol. , 1981,11:1-14.
  • 3Clack C W. Mathematical Bioeconomics the Optimal Management of Renewable Resources [ M]. New York:John Wiley Sons, 1990.
  • 4Van Lenteren J C, Woets J. Biological and integrated pest control in greenhouses[J]. Ann. Rev. Ent.,1988,33:239-250.
  • 5Barclay H J. Models for pest control using predator release,habitat management and pesticide release in combination[J]. J. Appl. Ecol. , 1976,19 : 337-348.
  • 6Panegya J C. A mathematical model of periodically pulsed chemotherapy. Tumor recurrence anel metastasys in a competition environment[J]. Bulletion of Math. Biol. , 1996,58 : 425-447.
  • 7Sanyi T,Lansun C. The periodic predator-prey Lotka-Volterra model with impulsive effect[J]. Journal of Mechanics in Medicine and Biology,2002,2 :267-296.
  • 8Bainov D,Simeonov P. Impulsive differential equations., periodic solutions and applications, pitman monographs and surveys in pure and applied mathematics, New York: Wiley, 1993.
  • 9Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[ M]. Berlin:Springer,1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部