期刊文献+

带势的非线性Klein-Gordon方程柯西问题的稳定和不稳定集(英文)

Stable and Unstable Sets for the Cauchy Problem for Nonlinear Klein-Gordon Equation with Potential
下载PDF
导出
摘要 对带势的非线性Klein-Gordon方程柯西问题,我们定义了新的对于初值的稳定和不稳定集.我们证明了如果发展进入了不稳定集,解在有限时间内爆破;如果发展进入了稳定集,解整体存在.运用势并讨论,我们回答了当初值为多少时,柯西问题的整体解存在. For the Cauchy problem for the nonlinear Klein-Gordon equation with potential,we define new stable and unstable sets for the initial data. We prove that if during the evolution enters into the unstable set, the solution blows up in finite time. If during the evolution enters into the stable set,the solution is global. By using scaling argument,we also answer the question of how small the initial data are the global solution of the Cauchy problem exists.
出处 《应用数学》 CSCD 北大核心 2006年第4期835-841,共7页 Mathematica Applicata
关键词 KLEIN-GORDON方程 稳定集 不稳定集 整体存在 爆破 Klein-Gordon equation Stable set Unstable set Global existence Blowup
  • 相关文献

参考文献10

  • 1Wang B X. On existence and scattering for critical and subcritical nonlinear Klein-Gordon equations in H'[J]. Nonlinear Anal TMA, 1998,31 (5/6) : 573- 587.
  • 2Shatah J. Unstable ground state of nonlinear Klein-Gordon equations[J]. Transactions of the American Mathematical Society, 1985,290(2) : 701-710.
  • 3Shatah J. Stable standing waves of nonlinear Klein-Gordon equations[J]. Commun. Math. Phys. , 1983,91:313-327.
  • 4Levine H A. Instability and non-existence of global solutions to nonlinear wave equations of the form Pun=- Aμ- F(μ) [J]. Transactions of the American Mathematical Society, 1974,92 : 1 -21.
  • 5Pagne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations[J ]. Israel J Math. ,1975,22(3-4) :273-303.
  • 6Ball J M. Finite time blow-up in nonlinear problems[A]. In.. M G Grandall, Nonlinear Evolution Equations, New York: Academic Press, 1978,189-205.
  • 7Strauss W A. Nonlinear wave equations[A]. Amer Math Soc. ,1989.
  • 8Zhang J. Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equations[J].Nonlinear Analysis TMA,2002,48 : 191-207.
  • 9Cazenave T. An introduction to nonlinear Schrodinger equations[A]. Textos de Metodos Mathematics,1989,22.
  • 10Pecher H. Lp- abschatzungen and Klassiche Losungen für nichtlineare wellengeichungen[J]. Math I Z,1976,150:159-183.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部