期刊文献+

基于随机Fourier谱的风场仿真 被引量:2

Simulation of Wind Field Based on Stochastic Fourier Spectrum
下载PDF
导出
摘要 研究了由随机Fourier谱生成具有特定场地风荷载统计特性的样本函数的问题.首先对随机风场模型进行了描述,然后利用谐波合成的方法,在对互随机Fourier谱矩阵进行Cholesky分解的基础上,通过一组余弦函数的和对随机脉动风速场进行了模拟.最后,结合一20层平面框架结构纵向风速场的仿真问题进行了数值仿真研究.算例表明,所提算法可以准确地模拟给定场地特性的脉动风速时程. Research was made on generating sample functions with prescribed statistic characteristics of wind loads at a given site. First, the random wind field model was described. Then based on the har- monic-wave superposition method, the random turbulent wind speed field was simulated by superposing a set of cosine functions after the cross stochastic Fourier spectrum matrix was decomposed with Cholesky' s method. Finally, an example involving simulation of longitudinal turbulent wind field of a 20-story plane frame structure was investigated. The result shows that the proposed algorithm is of accuracy.
作者 张琳琳 李杰
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第9期1142-1146,1158,共6页 Journal of Tongji University:Natural Science
基金 国家自然科学基金委优秀创新研究群体科学基金资助项目(50321803)
关键词 风场仿真 随机FOURIER谱 谐波合成 脉动风速 wind field simulation stochastic Fouriex spectrum superposition of harmonic waves turbulent wind velocity
  • 相关文献

参考文献17

  • 1李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003,35(4):437-442. 被引量:52
  • 2陈建兵,李杰.基于概率密度演化方法的随机结构可靠度分析[J].计算力学学报,2004,21(3):285-290. 被引量:19
  • 3Elishakoff I.Probabilistie methods in the theory of structures[M].New York:John Wiley & Sons,Inc,1983.
  • 4Kozin F.Auto-regressive moving-average models of earthquake records[J].J Probabilistic Engrg Mech,1988,3 (2):58.
  • 5Soong T T.Grigoriu M.Random vibration of mechanical and structural systems[M].Englewood Cliffs:Prentice-Hall,Inc,1993.
  • 6Rice S O.Mathematical analysis of random noise[C] //Wax N.Selected Papers on Noise and Stochastic Processes.New York:Dover Publ Inc,1954:133-284.
  • 7Shinozuka M.Monte Carlo solution of structural dynamics[J].Comp and Struct,1972,2(5 + 6):855.
  • 8Shinozuka M,Jan C M.Digital simulation of random processes and its applications[J].J Sound and Vibration,1972,25 (1):111.
  • 9Shinozuka M.Digital simulation of random processes in engineering mechanics with the aid of FFT technique[M]//Ariaratnam S T,Leipholz H H E.Stochastic Problems in Mechanics.Waterloo:Univ of Waterloo Press,1974:277-286.
  • 10Yang J N.On the normality and accuracy of simulated random processes[J].J Sound and Vibration,1973,26(3):417.

二级参考文献23

  • 1李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 2张炳根 赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1981..
  • 3Shinozuka M. Probabilistic modeling of concrete structures. Journal of Engineering Mechanics, ASCE, 1972, 98:1433-1451.
  • 4Kleiber M, Hien TD. The Stochastic Finite Element Method. Chishcester: John Wiley & Sons, 1992.
  • 5Hisada T, Nakagiri S, Stochastic finite element method developed for structural safety and reliability. In: Proc.3rd Int Conf on Structural Safety and Reliability, 1981,395-408.
  • 6Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics, 1990, 57:197-202.
  • 7Jensen H, Iwan WD. Response of systems with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics, 1992, 118 (5): 1012-1025.
  • 8Elishakoff I, Ben Y J, Shinozuka M. Variational principles developed for and applied to analysis of stochastic beams.Journal of Engineering Mechanics, 1996, 122 (6): 559-565.
  • 9Ren Y J, Elishakoff I, Shinozulm M. Finite element method for stochastic beams based on variational principles. Journal of Applied Mechanics, 1997, 64:664-669.
  • 10Elishakoff I, Impollonia N, Ren YJ. New exact solutions for randomly loaded beams with stochastic flexibility. International Journal of Solids and Structures, 1999, 36,2325-2340.

共引文献83

同被引文献26

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部