期刊文献+

基于模糊卡尔曼滤波的信息融合算法 被引量:10

Information Fusion Algorithm Based on Fuzzy Kalman Filter
下载PDF
导出
摘要 应用自适应模糊逻辑系统(AFLS)原理,研究了一种基于卡尔曼滤波器的信息融合算法;AFLS通过在线监视融合数据新息是否为零均值白噪音,然后根据模糊规则调整融合滤波器的指数加权值,从而保证了滤波器的最优估计性能;仿真结果证明该方法在高噪声环境中具有良好的信息融合能力,能有效跟踪研究对象的状态变化。 A efficient information fusion algorithm is presented using adaptive fuzzy logic system (AFLS) to tune the Kalman filter. Through monitoring the innovation of data to be fused on real time, Kalman filter is adopted by exponential weighting according to the fuzzy rules to get the optimal state estimation. Simulation result indicates that the algorithm is efficiency under high noise circumstance and can track the variance of state.
出处 《计算机测量与控制》 CSCD 2006年第9期1230-1232,共3页 Computer Measurement &Control
基金 航空科学基金资助项目(01153075 01A53001)。
关键词 信息融合 模糊加权 自适应模糊逻辑系统 卡尔曼滤波 information fusion fuzzy weighting adaptive fuzzy logic system Kalman filter
  • 相关文献

参考文献5

  • 1Gan Q, Harris C J. Comparison of two measurement fusion methods for Kalman--filter- based multisensor data fusion [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (1):273-280.
  • 2Sasiadek J Z. Sensor fusion [J]. Annual Reviews in Control,2002, 26: 203-228.
  • 3Sasiadek J Z, Wang Q. Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle [A]. proceedings of the 1999 IEEE International Conference on Robotics & Automation [C] . Detroit Michigan,1999.
  • 4Sasiadek J Z, Hartana P. Sensor data fusion using Kalman filter[J]. ISIF, 2000: 19-25.
  • 5Jetto L, Longhi S, Vitali D. Location of a wheeled mobile robot by sensor data fusion based on a fuzzy logic adapted Kalman filter [J].Control Engineering Practice, 1999, 7: 763-771.

同被引文献48

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部