期刊文献+

基于改进遗传算法的TSP问题优化研究 被引量:2

Research on TSP of Optimization Based on Improved Genetic Algorithm
下载PDF
导出
摘要 旅行商问题(TSP问题)已经被证明属于NP完全问题。遗传算法是一种模拟自然界中生物的进化机制的优化策略,是一种基于群体、隐并行搜索策略,是求解TSP问题效率相当高的一种算法。因此,本文提出使用改进的遗传算法,即用个体数量控制选择策略以保证群体的多样性,用顺序交叉算子和部分路径翻转变异算子来提高算法的收敛速度,较好地解决了群体的多样性和收敛速度的矛盾。算法的分析和测试表明,该改进算法的是有效的。 TSP can be proved that it belongs to total NP. Genetic algorithm is optimization game simulating the biology evolution system, which is searching game based on group and latent concurrent. And it is very high efficiency algorithm to solve TSP. Therefore, the paper proposes the improved genetic algorithm, which using individual amount control selection game in order to guarantee colony diversity, using order cross operator and partial route overturn mutation operator to improve convergent speed of algorithm so as to better solve the inconsistency between diversity and convergent speed. Algorithm analysis and test indicate the improved algorithm is effective.
出处 《物流科技》 2006年第9期131-133,共3页 Logistics Sci-Tech
基金 黑龙江大学2005青年基金资助 黑龙江省科技攻关项目(GB05D202-3)
关键词 物流系统优化 旅行商问题 改进遗传算法 logistic system optimization TSP improved genetic algorithm
  • 相关文献

参考文献6

二级参考文献37

  • 1Grefenstettee J J. Genetic Algorithms for the Salesman Problem[C] .In:Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Publishers, 1985. 160 - 165.
  • 2Fox B R, MeMahon M B. Genetic Operators for the Sequencing Problems. Foundations of Genetic Algorithms[M] .In: Rawlina G J E. Morgan Kaufmann Publishers, 1991. 284 - 300.
  • 3Rudolph C. Convergence Properties of Canonical Genetic Algorithms [ J ]. IEEE Trans. Neural Networks, 1994; 5 ( 1 ) : 96 -101.
  • 4Davis L. Job Shop Scheduling with Genetic Algorithms [ C ]. In: Proceedings of an International Conference on Genetic Algorithms and Their Applications, 1985.136 - 140.
  • 5Grefenstette J J, Gopal R, Rosmaita B J, Gucht D V. Genetic Algorithms for the Travaling Salesman Problem [C ]. In J.J.Grefemtette, Editor, Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, 1985. 160 -168.
  • 6Oliver L M, smith D J, Holland J R C. A study of Permutation Crossover Operatom on the Traveling Salesman Problem[C]. In: Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, 1987. 224 - 230.
  • 7Whiley L D, Starkweather T, Fuquay D A. Scheduling Problems and Traveling Salesman :The Genetic Edge Combination Operator[C]. In: Proceedings of the 3rd International Conference on Genetic Algorithm, Morgon Kaufsmsrm Publishers, 1989. 133 - 140.
  • 8Stakweather T,McDaniel S, Mathias K, Whitley C ,Whitley D. A Comparison of Genetic Sequencing Operators[C]. Proceedings of the 4th International Conference on Genetic Algorithm. Morgon Kaufamann,Los Altoe, 1991.69 - 76.
  • 9Sushil J. Louis. Genetic Algorithm for TSP[ OL ]. http://www, cs. unr. edu/- sushiL/pape:s/conference/newpape:s/99/gecco99/iga/GECC O/gecco/node 3. html.
  • 10Hiroakl SENGOKU, Ikuo YOSHIHARA. A Fast TSP Solver Using GA on JAVA [ OL]. http://www, gcd. org/sengoku/docs/ arob98, pdf.

共引文献236

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部