摘要
G.Sam b in引入了(代数)信息基的概念,并证明了代数Scott D om a in范畴和信息基范畴是等价的.B.R.C.Bedrega l给出了ω-代数cpo和SFP dom a in的刻划.而G.Q.Zhang通过序结构给出了SFP dom a in的刻划.本文将引入了拟信息基的概念并给出了ω-代数cpo和SFP dom a in的刻划.
G. Sambin introduced the(algebraic) information base, and proved the equivalence between the category of algebraic Scott domains and the category of information bases. B. R. C. Bedregal obtained tbe representations of ω-algebraic epo and SFP domain in. Zhang also gave the representation of SFP domain by sequent strtleture. In our work, we will introduce the notion of pre-information base, and give the representations of ω-algebraic epo and SFP domain.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第9期205-211,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(10471035/A010104)
山东省自然科学基金(2003ZX13)