摘要
考虑差分方程xn+1=a+b0xn+b1xn-1+…+bk-1xn-(k-1)xn-k其中a,bi是非负实数,a+∑k-1i=0bi>0,k∈{1,2,…}.证明了当k+1为素数时,方程的任半环不超过(2k+2)项;当k+1为合数且只有一个bi≠0时,方程的任半环不超过2k+1+km+0 1项,其中m0=min{m m为k+1的大于1的因数}.结果部分回答了C.Darwen and W.T.Patula提出的公开问题.
In this paper, we study further on the cycle length for the difference equation xn+1=xn-k/(a+∑i=0 ^k-1 bixn-i) where a and bi are nonnegative numbers and (a+∑i=0 ^k-1 bi)〉 0. It is showed that if k+1 is a prime number, then every semicycle has no more than (2k + 2) terms; if k + 1 is a composite number and only one bi≠0, then every semicycle has no more than ( 2k + 1 + m0/k+1) . where m0 = min{m /m〉 1 ,is a factor of k + 1}. This result partially answer the open question posed by C. Darwen and W. T. Patula.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第9期292-298,共7页
Mathematics in Practice and Theory
基金
河南省自然科学基金(0111051200
0611055100)
河南省青年骨干教师资助项目(20050181)
河南省教育厅自然科学基金(2004601087)