期刊文献+

一类Lyness方程解的性质

Properties of Solution in A Class Lyness Equation
原文传递
导出
摘要 考虑差分方程xn+1=a+b0xn+b1xn-1+…+bk-1xn-(k-1)xn-k其中a,bi是非负实数,a+∑k-1i=0bi>0,k∈{1,2,…}.证明了当k+1为素数时,方程的任半环不超过(2k+2)项;当k+1为合数且只有一个bi≠0时,方程的任半环不超过2k+1+km+0 1项,其中m0=min{m m为k+1的大于1的因数}.结果部分回答了C.Darwen and W.T.Patula提出的公开问题. In this paper, we study further on the cycle length for the difference equation xn+1=xn-k/(a+∑i=0 ^k-1 bixn-i) where a and bi are nonnegative numbers and (a+∑i=0 ^k-1 bi)〉 0. It is showed that if k+1 is a prime number, then every semicycle has no more than (2k + 2) terms; if k + 1 is a composite number and only one bi≠0, then every semicycle has no more than ( 2k + 1 + m0/k+1) . where m0 = min{m /m〉 1 ,is a factor of k + 1}. This result partially answer the open question posed by C. Darwen and W. T. Patula.
出处 《数学的实践与认识》 CSCD 北大核心 2006年第9期292-298,共7页 Mathematics in Practice and Theory
基金 河南省自然科学基金(0111051200 0611055100) 河南省青年骨干教师资助项目(20050181) 河南省教育厅自然科学基金(2004601087)
关键词 LYNESS方程 半环长 lyness equation semicyele length
  • 相关文献

参考文献5

  • 1Lyness RC. Notes 1581, 1847, and 2952[J]. Math. Ga2.1942,26:62;1945,29:261;1961.45;201.
  • 2Graham R L, Problem # 1343[J]. Mag. 1990.63(2) :125.
  • 3Kocic V L. Ladas G, Rodrigues I W. On national recursive sequences[J]. J Math Anal Appl,1993.173 :127-157.
  • 4Darwen C. Tatula W. Properties of a certain Lyness equation[J]. J Math Anal Appl,1998,218:458-478.
  • 5柯召,孙琦.数论讲义[M].高等教育出版社.1998年3月:20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部