期刊文献+

关于偶数Goldbach数的均值性质

On the Mean Value Properties of Even Goldbach Conjecture
原文传递
导出
摘要 设D(n)表示方程n=p1+p2的解数,其中p1,p2为奇素数,若D(n)>0,则我们称n为偶数G o ldbach数.主要目的是利用初等和解析方法从两个不同的角度来研究偶数G o ldbach数的均值性质,并给出了两个相同的渐近公式,从而为进一步证明偶数G o ldbach猜想的正确性提供了有力的证据. Let D(n) denotes the number of the solutions of the equation n= P1 + P2, where P1 and P2 are odd primes. If D(n) 〉 0, then we call such a number n as even Goldbach number. Using the elementary and analytic methods, we study the mean value properties of the even Goldbach number from two different directions, and obtain two interesting asymptotic formulae for them, therefore provide powerful evidence to prove the correctness of the even Goldbach conjecture.
作者 姚维利
出处 《数学的实践与认识》 CSCD 北大核心 2006年第9期329-333,共5页 Mathematics in Practice and Theory
关键词 偶数Goldbach数 均值 渐近公式 the even goldbach number mean value asymptotic formula
  • 相关文献

参考文献11

  • 1华罗庚.Some results in the additive prime number theory[J]. Quart J Math Oxford.1938.9:68-80.
  • 2Ramaehandra K J. On the number of Goldbach numbers in short intervals[J]. India Math Soc. 1973.37:157-170.
  • 3Huxley M N. On the difference between consecutive primes[J]. Invert Math, 1972.15: 164-170.
  • 4贾期华.Three primes theorems on a short interval(V)[J]. Acta Math Sci. New Series, 1991.7(2):135-170.
  • 5Perelli H. Pintz J. On the exceptional set for Goldback's problem in a short intervals[J]. Monatsh Math. 1985.98:115-143.
  • 6贾朝华.关于小区间上的Goldbach数[J].中国科学(A辑),1994,24(12):1233-1259. 被引量:3
  • 7李红泽.小区间内的Goldbach数[J].中国科学(A辑),1995,25(3):225-234. 被引量:2
  • 8潘承洞,潘承彪.歌德巴赫猜想[M].科学出版社,1984.
  • 9陈景润 潘承洞.歌德巴赫数的例外集合[J].山东大学学报:自然科学版,1979,1:1-27.
  • 10Pan Cbengdong, Pan Chengbiao. The Elementary Number Theory[M]. Beijing University Press: Beijing,2003.

二级参考文献4

  • 1贾朝华.关于小区间上的Goldbach数[J].中国科学(A辑),1994,24(12):1233-1259. 被引量:3
  • 2Henryk Iwaniec,János Pintz. Primes in short intervals[J] 1984,Monatshefte für Mathematik(2):115~143
  • 3D. R. Heath-Brown,H. Iwaniec. On the difference between consecutive primes[J] 1979,Inventiones Mathematicae(1):49~69
  • 4Jia Chaohua. Three primes theorem in a short interval (V)[J] 1991,Acta Mathematica Sinica(2):135~170

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部