期刊文献+

基于BP神经网络的车用汽油机过渡工况空燃比多步预测模型

Multi-step Predictive Model for Air/Fuel Ratio of Gasoline Engine at Transient Conditions Based on Back Propagation Neural Network
下载PDF
导出
摘要 为克服车用汽油机空燃比传输延迟对空燃比控制精度的影响,提出了一种基于BP神经网络的空燃比多步预测模型。通过对空燃比数学模型的分析,确定神经网络空燃比多步预测模型的输入向量,同时为提高空燃比预测精度,在神经网络输入向量中增加反映空燃比变化趋势的导数信息。以HL495发动机过渡工况试验数据进行仿真,结果表明该方法能精确预测过渡工况空燃比。 A multi-step predictive model for air/fuel ratio of gasoline engine at transient conditions is presented. By analyzing the model, the input vectors for neural network-based multi-step predictive model are determined. Meanwhile, the input vectors include the derivatives of air/fuel ratio for increasing the prediction accuracy of air/fuel ratio. The results well agree with experiment data at transient conditions of HL495 engine, showing high accuracy of prediction model.
出处 《汽车工程》 EI CSCD 北大核心 2006年第9期809-811,843,共4页 Automotive Engineering
基金 国家自然科学基金项目(50276005)资助
关键词 汽油机 过渡工况 空燃比 神经网络 多步预测 Gasoline engine, Transient conditions, Air fuel ratio, Neural networks, Multi-step prediction
  • 相关文献

参考文献4

  • 1Won M,Choi S B.Air-to-fuel Ratio Control of Spark Ignition Engines Using Gaussian Network Sliding Control[J].IEEE Transaction on Control System Technology,1998,6 (5).
  • 2Wendeker M.Hybrid Air Fuel Ratio Control Using the Adaptive and Neural Networks[C].SAE Paper 2000-01-1248.
  • 3Elbrt Hendricks.Mean Value Modeling of Spark Ignition Engines[C].SAE Paper 960616.
  • 4Cesare Alippi.A Neural-network Based Control Solution to Air Fuel Ratio for Automotive Fuel Injection System[J].IEEE Transactions on System Man and Cybernetics-Part C,2003,33(2).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部