期刊文献+

基于小波变换的海量高光谱遥感数据分形编码压缩算法研究 被引量:3

原文传递
导出
摘要 提出基于小波变换和频域空间分形编码的海量高光谱数据压缩新方法(AWFC).与传统的数据压缩相区别,基于图像自身灰度空间的压缩编码为第一代图像压缩技术,以小波变换为工具基于图像频域空间的编码为第二代图像压缩技术,以分形技术为代表对图像的特征空间编码为第三代图像压缩技术.同时探讨了利用成像光谱影像数据存在空间维和光谱维上的相关性,尽可能保持光谱不变情况下如何进一步提高图像压缩效率.和传统的图像有损压缩相比,在同等信息损失的情况下,AWFC算法能够极大的提高压缩比,同时和第二代以小波技术为代表压缩算法相比,本算法也具有效率更高的优势.同时提供了对光谱空间[光谱维],灰度空间[空间维]和经过小波变换WT频域空间3种分形编码FC进行对比,探讨光谱保持下的高压缩比,同时保持快速编码与解码的分形高光谱影像压缩方法.与经典的图像数据压缩方法相比,基于分形编码的图像压缩方法其压缩比在理论上可以超过经典压缩方法的几个数量级.分形图像压缩极高的压缩比,快速的解压速度在高光谱影像压缩中将会为高光谱甚至超光谱航天遥感带来新的思路.提供了将分形分块技术引入到高光谱甚至超光谱影像光谱维分块的思路,发展了光谱形态保持的图像分块技术,给出了基于光谱保持的分形编码压缩框架.最后,作为高光谱图像处理与分析系统HIPAS的一部分,我们在VC++6.0下,基于WindowsXP平台对高光谱影像压缩模块进行了软件模块实现和验证.
出处 《中国科学(E辑)》 CSCD 北大核心 2006年第B07期45-53,共9页 Science in China(Series E)
基金 中国科学院知识创新工程重要方向项目(批准号:KZCX3-SW-350) 中国科学院遥感应用研究所创新课题(批准号:KZCXZ-312) 国家863计划课题(批准号:2003AA131060)资助
  • 相关文献

参考文献14

  • 1Yu J L,Hu X T,Zhang B,et al.A New Architecture for Hyperspectral Image Processing and Analysis System:Design and Implementation.In:Proceedings of SPIE-The International Society for Optical Engineering,2003,5286(2):696-699
  • 2Kruse F A,Lefkoff A B,Boardman J W,et al.The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data.Remote Sens Environ,1993,44:145-163
  • 3Susner N J,Lo J T,McCord T B.A Hyperspectral Image Processing System-HIPS In:Proceedings of the International Symposium on Spectral Sensing Research,San Diego,California,1994.496-502
  • 4Tong,Q X,Zheng L F,Xue Y Q.Development and Application of Hyperspectral Remote Sensing in China.In:Proceedings of SPIE,Publishers,Dordrecht/Bost/London.1998.3502:2-9
  • 5Davis G M.A Wavelet-Based Analysis of Fractal Image Compression.To Appear in IEEE Transaction on image processing,1997.133-138
  • 6Jacquin A.Image coding based on a fractal theory of it-erated contractive imag transformations,IEEETrans.ImageProc,Jan,1992.18-30
  • 7Barnsley M F,Jacquin A,Application of recurrent iterated function systems to images,Proc SPIE,1988,1001:122-131
  • 8Jacquin A.Fractal image coding based on a theory of iterated contractive image transformations.In:Proc SPIE Visual Comm and Image Proc,1990.227-239
  • 9Bamsley M F,Demko S.Iterated function systems and the global construction of fractals.In:Proc Soc A-Math Phys Eng Sci,1985,399:243-275
  • 10Davoine F,Bertin E,Chassery J M.Fromrigidity to adaptivet esselations for fractal image compression:comparative studies,In:IEEE IMDSP,Sept 1993.193-196

同被引文献20

  • 1张绍荣,苏令华.一种基于主成分分析的高光谱图像压缩方法[J].无线电工程,2005,35(9):53-54. 被引量:3
  • 2张传生,丁承民,刘贵忠.一种新的基于Kohonen网络的图像矢量量化[J].系统工程与电子技术,1997,19(3):55-57. 被引量:1
  • 3RAO A K,BHARGAVA S. Multispeetral data compression using bidirectional interband prediction [ J ]. IEEE Trans. Geoseience Remote Sensing, 1996, 34 ( 2 ) : 385.
  • 4ABOUSLEMAN G P, MARCELLIN M W , REAGAN J T. Compression of hyperspectral imagery using the 3 - D DCT [ J ] , IEEE Trans. Geoscienee Remote Sensing, 1995,33(1) : 26.
  • 5NGAI-MANCHEUNG, CAIMUTANG, et al. Efficient wavelet-based predictive slepian-wolf coding for hyperspectral imagery [ J ]. Signal Processing, 2006, (86) : 3180.
  • 6RAJEEV KUMAR, VISHNU MAKKAPATI. Encoding of multispectral and hyperspectral image data using wavelet transform and gain shape vector quantization [J]. Image and Vision Computing, 2005, (23) : 721.
  • 7VISHNU MAKKAPATI, RAJEEV KUMAR. Improved encoding of wavelet coefcients extracted from multi - spectral and hyperspectral image data[ OL]. http:// www. ee. iitb. ac. in/- icvgip/PAPERS/282, pdf (2007.12.12.).
  • 8YANG JIAN,ZHANG DAVID, et al. Two-Dimensional PCA: a new approach to appearance-based face representation and reeognitlon [ J ]. IEEE Transactions on pattern analysis and machine intelligence, 2004, 26 (1) : 131.
  • 9GURU D S,NAGABHUSHAN P, SHEKAR B H. Two dimensional principal component analysis for visual learning and recognition of 3D Objects-A Robust and an efficient approach [ EB/OL]. Proceedings of the Interna-tional conference on cognition and recognition, http:// www. studentprogress, com/appln/colleges/cogrec/Papets/C_06. pdf. 2007.04.06.
  • 10KONG HUI,WANG LEI, et al. Generalized 2D Principal Component Analysis for Face Image Representation and Recognition [ J ]. Neural Networks 2005, (18) :585.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部