期刊文献+

直接微生物燃料电池的构建及初步研究 被引量:23

Construction and Preliminary Studies on the Direct Microbial Fuel Cell
下载PDF
导出
摘要 利用Geobactermetallireducens能够以Fe(OH)3固体作电子受体进行呼吸的特性,用其构建直接微生物燃料电池,初步考察了产电情况和产电原理.实验证明,Geobactermetallireducens直接微生物燃料电池的电能产出主要依赖于吸附在电极上的细菌.燃料醋酸钠可以完全氧化至CO2,反应结束后其浓度低于检测下限(<10μmol/L).电子回收率达80%,电流密度达704.4mA/m2. The mediators added in indirect microbial fuel cells are often toxic, unstable and costly. Direct microbial fuel cells do not need mediators during oxidation of carbohydrate or organic acids, overcoming the above problems, so it can be used in bioremediation and treatment of waste water. In the present work, Geobacter metallireducens, a dissimilatory ferric reducing microorganism that can use Fe(OH)3 as the electron acceptor, was used to construct the direct microbial fuel cell. Geobacter metallireducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate was the electron donor. Electricity production and mechanism were preliminarily studied. The direct microbial fuel cell was successfully constructed. It was proved that microbial electricity production was mainly due to the cells attached to the electrode. Electrode-attached cells completely oxidized acetate to the levels below detection limit (〈10 μmol/L). The electron recovery was 80%, and current density was up to 704.4 mA/m^2.
出处 《过程工程学报》 EI CAS CSCD 北大核心 2006年第3期408-412,共5页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:20476009)
关键词 微生物燃料电池 GEOBACTER metallireducens 生物膜 电子回收率 microbial fuel cell Geobacter metallireducens biofilm electron recovery
  • 相关文献

参考文献15

  • 1Thurston C F,Bennetto H P,Delaney G M,et al.Glucose Metabolism in a Microbial Fuel Cell:Stoichiometry of Product Formation in a Thionine-mediated Proteus vulgaris Fuel Cell and Its Relation to Coulombic Yield[J].J.Gen.Microbiol.,1985,131:1393-1398.
  • 2Emde R,Schink B.Enhanced Propionate Formation by Propionibacterium freudenreichii subsp.Freudenreichii in a Three-electrode Amperometric Culture System[J].Appl.Environ.Microbiol.,1990,56:2771-2776.
  • 3Tokuji I,Kenji K.Vioelecrocatalyses-based Application of Quinoproteins and Quinoprotein-containing Bacterial Cells in Biosensors and Biofuel Cells[J].Biochim.Biophys.Acta,2003,1647:121-126.
  • 4Park D H,Zeibus J G Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore[J].Appl.Environ.Microbiol.,2000,66:1292-1297.
  • 5Kim H J,Park H S,Hyun M S,et al.A Mediator-less Microbial Fuel Cell Using a Metal Reducing Bacterium,Shewanellaputrefaciens[J].Enzyme Microbiol.Technol.,2002,30:145-152.
  • 6Bond D R,Lovley K R.Electricity Production by Geobacter sulfurreducens Attached to Electrodes[J].Appl.Environ.Microbiol.,2003,69:1548-1555.
  • 7Chaudhuri S K,Lovley D R.Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells[J].Nat.Biotechnol.,2003,21(10):1229-1232.
  • 8Lovley D R,Giovannoni S J,White D C,et al.Geobacter metallireducens gen.nov.sp.nov.,a Microorganism Capable of Coupling the Complete Oxidation of Organic Compounds to the Reduction of Iron and Other Metals[J].Arch.Microbiol.,1993,159:336-344.
  • 9Hungate R E.Methods in Microbiology[M].New York:Academic Press Inc.,1969.117-132.
  • 10Terry L M,Wolin M J.A Serum Bottle Modification of the Hungate Technique for Cultivation Obligate Anaerobes[J].Appl.Microbiol.,1974,27(5):985-987.

同被引文献281

引证文献23

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部