期刊文献+

连铸二次冷却智能优化控制的研究 被引量:9

Research on Intelligent Control of Secondary Cooling of Continuous Casting
下载PDF
导出
摘要 针对连铸二冷目标温度控制法存在的系统不稳定、水量计算波动大等问题,以连铸二冷温度场数值计算为基础,采用在冶金约束条件允许下的变化目标温度,变化初始水量的方法,解决二冷动态控制实施过程中存在的问题。运用神经网络对函数的逼近能力与自学习能力构造目标温度控制模型(TTANN)、二冷水控制模型(IWANN)、设计智能PID控制器,与连铸坯温度计算模型组成连铸二冷控制系统,实现连铸二冷动态优化控制。仿真结果表明,温度动态控制精度小于12℃。 Based on numerical calculation of strand temperature field, using variable aim temperature with metallurgical restrictions and variable initial water flow rate, the unsteadiness and large difference between calculated and actual water flow rate of secondary cooling control can be solved. Using the ability of approaching function and selflearning of neural networks, the models of target temperature control (TTANN) and initial water flow rate control (IWANN) were set up. AI PID controller was designed. Then the dynamic control system of secondary cooling in continuous casting was developed. The system is composed of two models, controller and temperature calculation model. The results of simulation test show that the error of bloom surface temperature is less than 12℃.
出处 《钢铁》 CAS CSCD 北大核心 2006年第9期40-43,共4页 Iron and Steel
关键词 连铸 二次冷却 智能控制 continuous casting secondary cooling intelligent control
  • 相关文献

参考文献4

  • 1Samarasekera I V.Evolution or Revolution-a New Era in Billet Casting[J].Canadian Metallurgical Quarterly,1999,38 (5):347.
  • 2Dmitry Sediako.Some Aspects of Thermal Analysis and Technology Upgrading in Steel Continuous Casting[J].Canadian Metallurgical Quarterly,1999,38(5):377.
  • 3Cheung N.Use of a Heuristic Search Technique for the Optimisation of Quality of Steel Billets Produced by Continuous Casting Engineering[J].Applications of Artificial Intelligence,2001,14:229-238.
  • 4许东.神经网络[M].西安:西安电子科技大学出版社,2002.

同被引文献104

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部