摘要
利用泰勒中值定理推广[1]中的一个例题,利用罗尔定理,拉格朗日中值定理和柯西中值定理推广2001年全国考研一个题目,分别得到如下结果:1.若f(x)在(a、b)内恒为正,在[a,b]上具有(2n+2)阶连续导数,并且在两个端点处不超过2n阶的导数均为零,则∫abf(2fn(+2x))(x)dx>(2(nb+-1a))!22n+21n+22.若f(x)在[-a,a]上具有2n阶导数,且在原点处不超过2n-2阶的偶数阶导数均为零,则在[-a,a]上至少存在一点η,使2a2n+1f(2n)(η)=(2n+1)!∫-aaf(x)
出处
《高等数学研究》
2006年第5期45-46,共2页
Studies in College Mathematics