期刊文献+

耕作及水蚀影响下坡耕地土壤有机碳动态模拟 被引量:12

SIMULATION ON DYNAMICS OF SOIL ORGANIC CARBON UNDER THE EFFECT OF TILLAGE AND WATER EROSION
下载PDF
导出
摘要 土壤侵蚀和沉积明显影响土壤有机碳(SOC)的积累与损耗,在以往土壤碳平衡模拟中却未得到应有的重视。本文以典型黑土漫岗坡耕地表层土壤为研究对象,利用CENTURY模型模拟特定质地下自然黑土有机碳的积累过程,估算研究区黑土有机碳及各组分的背景值;对比研究侵蚀泥沙对SOC富集的影响,将模型模拟值与实测值进行统计比较来验证模型;进而模拟侵蚀区开垦后SOC以及各组分随时间的变化,定量研究土壤侵蚀对SOC各组分损失的贡献。研究结果表明:黑土有机碳的累积大致可分为初期的快速积累和后期缓慢积累两个阶段,前期慢性有机碳库的累积对SOC库的增加贡献最大,后期SOC累积主要由惰性有机碳缓慢累积来完成。达到平衡状态时,研究区黑土有机碳含量为7 240 g m-2,以慢性和惰性有机碳为主,约占总SOC的97.4%。考虑泥沙对SOC的富集作用,模型模拟值与实测值更加吻合。自然黑土开垦后,微生物分解矿化作用是活性和慢性有机碳损失的主要途径,土壤侵蚀明显降低惰性有机碳含量,其贡献率随侵蚀速率的增加而增大。因研究区侵蚀不严重,土壤侵蚀对开垦以来的SOC库损耗贡献较小。 Soil erosion and deposition influences accumulation and loss of soil organic carbon (SOC), yet it has never been an issue of proper attention in the study of soil carbon cycle. In this paper, the CENTURY model was used to simulate original organic carbon accumulation in black soil of a given soil texture in a typical rolling farmland in the Black soil region, Northeast China to get the initial value of SOC and its fractions; Then the model was verified through statistical comparison between the simulations and actual measurements with and without considering SOC enrichment with sediments; And then temporal variation of SOC and its fractions after reclamation, and contribution of soil erosion to SOC loss were assessed. The results show that SOC accumulation could be divided into two stages, i. e. fast accumulation in earlier stage and slow accumulation in later stage. The slow organic carbon accumulation in the former stage contributed the most to the SOC pool and passive organic carbon played a dominant role in SOC accumulation at the latter stage. When equilibrium was reached the content of organic carbon in the black soil in the study area was 7 240 g m^-2, of which slow and passive organic carbon accounted for 97.4% ; The simulations tallied better with the actual measurements was better when the effect of sediments on SOC enrichment was taken into account; When natural black soil was cultivated, active and slow carbon was most likely to get decomposed by microorganism and mineralized, while passive carbon was losing with soil erosion. It was not so significant because soil erosion was not serious problem in the study area.
出处 《土壤学报》 CAS CSCD 北大核心 2006年第5期730-735,共6页 Acta Pedologica Sinica
基金 中国科学院国外杰出人才支持项目(K09Z3) 国家自然科学基金项目(40271108 40471125)资助
关键词 土壤侵蚀 土壤有机碳 CENTURY模型 黑土 Soil erosion Soll organic carbon (SOC) CENTURY model Black soil
  • 相关文献

参考文献16

  • 1Lal R.Soil erosion and the global carbon budget.Environment International,2003,29:437 ~ 450
  • 2Lee J L,Phillips D L,Liu R.The effect of trends in tillage practices on erosion and carbon content of soils in the U.S.corn belt.Water,Air,Soil Pollut.,1993,70:389 ~ 401
  • 3Lee J L,Phillips D L,Dodson R F.Sensitivity of U.S.corn belt to climate change and elevated CO2:Ⅱ.Soil erosion and organic carbon.Agric.Syst.,1996,52:503 ~ 521
  • 4Liu S,Bliss N,Sundquist E,et al.Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition.Global Biogeochemical Cycles,2003,17(2):1 074 ~ 1 098
  • 5Polyakov V,Lal R.Modeling soil organic matter dynamics as affected by soil water erosion.Environment International,2004,30:547 ~ 556
  • 6Gregorich E G,Greer K J,Anderson D W,et al.Carbon distribution and losses:Erosion and deposition effects.Soil & Tillage Research,1998,47:291 ~ 302
  • 7Parton W J,Schimel D S,Cole C V,et al.Analysis of factors controlling soil organic matter levels in Great Plains Grasslands.Soil Science Society of America Journal,1987,51(5):1 173 ~ 1 179
  • 8NREL.CENTURY User's Guide and Reference.Fort Collins,Colombia:Natural Resource Ecology Laboratory,Colorado State University,2001
  • 9方华军,杨学明,张晓平,梁爱珍.利用燃煤飞灰作为时间标记物评价坡耕地黑土侵蚀物质和有机碳的再分配[J].土壤学报,2005,42(1):16-23. 被引量:12
  • 10方华军,杨学明,张晓平,梁爱珍.^(137)Cs示踪技术研究坡耕地黑土侵蚀和沉积特征[J].生态学报,2005,25(6):1376-1382. 被引量:40

二级参考文献55

  • 1高云超,朱文珊,陈文新.土壤微生物生物量周转的估算[J].生态学杂志,1993,12(6):6-10. 被引量:71
  • 2方华军,杨学明,张晓平,梁爱珍.利用燃煤飞灰作为时间标记物评价坡耕地黑土侵蚀物质和有机碳的再分配[J].土壤学报,2005,42(1):16-23. 被引量:12
  • 3吉林省土壤肥料工作站.吉林土壤[M].北京:中国农业出版社,1998.647.
  • 4黑龙江土壤普查办公室和黑龙江省土地管理局.黑龙江土壤[M].北京:中国农业出版社,1992.864.
  • 5Patton W J, Steward J W B, Cole C V. Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry, 1988,5:109- 131.
  • 6Grant R F. Changes in soil organic matter under different tillage and rotation: mathematical modeling in ecosys. Soil Science Society America.Journal, 1997,61:1 159-1 174.
  • 7Paustian K, Elliott E T, Killian K. Modeling soil carbon in relation to management and climate change in some agroecosystems in Central North America. in Lal R, Kimble J M, Follett R F, Steward BA( eds. ) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, F L. 1998:459-471.
  • 8Coleman K, Jenkinson D S. RothC-26.3 : a Model for the Turnover of Carbon in Soil, Model Description and User's Guide. Lawes Agri-Cultural Trust, Harpenden, UK, 1995:32.
  • 9Coleman K, Jenkinson D S, Crocker G J, Grace P R , Klir J,MōrsChens M, Poulton P R, Richter D D. Simulating trends in soil organic Carbon in long-term experiments using RothC-26.3. Geoderma, 1997,81:29-44.
  • 10Buyanovsky G A, Wagner G H. Post-harvest residue input to cropland. Plant & Soil, 1986,93:57- 65.

共引文献145

同被引文献246

引证文献12

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部