期刊文献+

透气砖对底吹中间包钢液流动特性影响的水力学模拟 被引量:2

Water Modeling of Effect on Steel Liquid Flow in the Bottom Gas Blowing Tundish of Different Porous Materials
下载PDF
导出
摘要 采用不同性能参数的多孔透气砖进行中间包底部吹气水模实验,研究透气砖的气孔率、透气度、平均孔径对所形成的气泡大小和能形成有效气幕所需条件的影响,并分析使用不同透气砖时的RTD曲线,对使用不同透气砖时的吹气参数进行了优化。研究结果表明,透气砖的气孔率、透气度越小,形成的气泡越小,能形成有效气幕所要求的吹气量越大。采用中间包底部吹气技术,当控制的吹气参数合理时,可以有效地延长钢液的平均停留时间,降低死区体积;在中间包底部同一位置吹气时,气体通过的透气砖不同,要求的吹气参数不同。 Effect on steel liquid flow in the bottom gas blowing tundish of different porous materials was studied using water modeling. It is found that the parameters of porosity, permeability and average diameter have great influence on bubble size and gas flow rate which can form effective gas curtains. When gas is blowing through different porous materials, the relevant RTD curves are analysed and the gas blowing parameters optimized. The results show that higher gas flow rate is needed to form effective gas curtains and the bubbles are smaller as the porosity and permeability of porous materials are smaller. With bottom gas blowing at the tundish, the average residence time of steel liquid flow in the tundish can be prolonged effectively ; the dead volume fraction can be reduced. Different gas blowing parameters are needed when gas is blowing through different porous materials at the same position of the tundish.
出处 《武汉科技大学学报》 CAS 2006年第5期433-435,448,共4页 Journal of Wuhan University of Science and Technology
基金 国家科技攻关计划资助项目(2005BA325C) 湖北省耐火材料与高温陶瓷重点实验室--省部共建国家重点实验室基金资助项目(J30411)
关键词 中间包 吹气 透气砖 水模 tundish gas blowing porous plug water modeling
  • 相关文献

参考文献6

二级参考文献31

  • 1Par G J, Lage T I J. The Use of Fundamental Process Models in Studying Ladle Refining Operations[J]. ISIJ Int, 2001, 41(11):1289-1302.
  • 2Sheng D Y, Jonsson L. Application of CFD Technology in Steel Refining[A]. Wu J H. ACFD 2000 Conference Proceedings[C].Beijing: The Federation of Engineering Societies of China and Technology, 2000. 162-169.
  • 3Zhang L F, Taniguchi S, Matsumoto K. Water Model Study on Inclusion Removal from Liquid Steel by Bubble Floatation under Turbulent Conditions[J]. Ironmaking Steelmaking, 2002, 29(5):326-336.
  • 4Zhang L F, Taniguchi S, Cai K K. Fluid Flow and Inclusion Removal in Continuous Casting Tundish[J]. Metall. Mater. Trans. B, 2000,31B(4): 253-266.
  • 5David T C. Computational Modeling of Multiphase Turbulent Fluid Flow and Heat Transfer in the Continuous Slab Casting Mold[D].Illinois: University of Illinois, 1997. 1-6.
  • 6Roizard C,Poncin S,Lapicque F, et al.Behavior of Fine Particle in the Vicinity of a Gas Bubble in a Stagnant and a Moving Fluid[J].Chem.Eng.Sci,1999,54:2317-2323.
  • 7Ralston J,Dukhin S S,Mishchuk N A.Wetting Film Stability and Floatation Kinetics[J].Adv.Colloid Interface Sci,2002,95:145-236.
  • 8Sato Y Sekoguchi K.Liquid Velocity Distribution in Two-phase Bubble Flow[J].Int.J.Multiphase Flow,1975,2:79-95.
  • 9Grace J1L Wairegi L Nguyen T H.Shapes and Velocities of Simple Drops and Bubbles Moving Freely through Immiscible Liquids[J].Trans.Inst.Chem.Eng,1976,54:167—179.
  • 10Lopez de Bertodano M.Two Fluid Model for Two-phase Turbulent Jet m.Nucl.Eng.Des,1998,179:65—74.

共引文献38

同被引文献12

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部