期刊文献+

基于非线性相关的最小方差套期保值比率研究 被引量:11

Research on MV Hedge Ratio Based on Nonlinear Correlation
下载PDF
导出
摘要 在最小方差套期保值模型的基础上,提出了最小方差套期保值的期货与现货波动非线性对冲原理,利用非线性相关系数代替传统的线性相关系数,提高了套期保值比率的准确性。提出了套期保值的收益率波动预测原理,利用GARCH(1,1)预测期货收益率的方差,利用EWMA模型预测现货收益率的方差,解决了收益率在历史期和套期保值期间因收益率波动发生结构性变化所导致的套期保值效果失真的问题。实证研究结果表明,本研究的套期保值比率的有效性高于现有模型,应用本研究模型进行套期保值,可以有效规避现货价格风险。 On the base of MV hedge ratio, this paper put forward the principle of future retum and spot retum matching, using nonlinear correlation parameter replace the linear one to improve the hedge ratio. We also put forward the principle of dynamic anticipation of the deviation of future and spot return, using GARCH (1,1) to anticipate the future return deviation and EWMA to estimate the spot retum , these will solve the problem caused by data changing. The empirical tests shows that the efficiency of the paper superior to present model, using the MV hedging ratio based on nonlinear correlation can effectively averse the spot price risk.
出处 《价值工程》 2006年第10期154-157,共4页 Value Engineering
基金 国家自然科学基金资助项目(70571010) 中期协联合研究计划资助项目(GT200410和ZZ200505) 大连市科技计划项目(2004C1ZC227)。
关键词 最小方差套期保值 非线性相关 GARCH模型 EWMA模型 MV hedge nonlinear correlation GAECH EWMA
  • 相关文献

参考文献6

  • 1Ederington L H.The hedging performance of the new futures markets[J].Journal of Finance,1979(34).157-170.
  • 2Chen S.Lee,C.Shrestha K.Futures hedge ratios.a review[J].The Quarterly Review of Economics and Finance,2003(43).433-465.
  • 3Laurent J P &Pham H.Dynamic programming and meanvariance hedging[J].Finance and Stochastic.1999(3).83-110.
  • 4Bollerslew T.Generalized autoregressive conditional heteroskeda -sticity[J].Journal of Forecasting,1986.31-32.
  • 5迟国泰,刘轶芳,冯敬海.基于牛顿插值原理的期货价格波动函数及保证金随动模型[J].数量经济技术经济研究,2005,22(3):150-160. 被引量:12
  • 6Howard C T & D Antonio L J.A risk-return measure of hedging effectiveness[J].Journal of Financial and Quantitative Analysis.1984,(19).101-112.

二级参考文献13

  • 1徐海熙.论期货市场价格变动原因[J].江苏经贸职业技术学院学报,2004(1):32-35. 被引量:2
  • 2The Role of Nan- Interest-Bearing Instruments in the Net Interest Margin [J], Federal Reserve Bulletin,Spring.2004, 90 (2) : 173--183.
  • 3Passig, David. Futuer-time span as a cognitive skill in future stud ies [J], Futures Research Quarterly,Winter 2004, 19 (4): 27-48.
  • 4Kevin Cheng, Rico Leung. Futures Contract Margining and Risk Management [J], http: //www.hkex. com. hk/futuresotherstat.htm. 2003.03.16.
  • 5Lagoudas, Dimitris C., Entehev, Pavlin B. Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: eonstitutlve model for fully dense SMAs[J].Mechanics of Materials, Sep 2004, 36 (9): 865--893.
  • 6Rainbow, K. and P. D. Praetz, The distribution of returns in s3rndey cool futures, in Barry A. Cossed[J], Futures Markets : their estab lish ment & pedormance, croom helm , beckenham. 1985: 23--85.
  • 7So, J.C., The sub-Caussian distribution of currency futures : stable paretian or nonstationary? [J],Review of Economies and Statistics , 1987, 69: 100--107.
  • 8Serge, J.A., On the distribution of financial futures prices changes , Financial futures prices changes[J], Financial Analyst Jouranl , 1989, 15 (6): 75-78.
  • 9Najand, M. and K. Yung, Conditional heteroskedasticity and weekend effect in S & P500 index futures[J], Journal of Business Fiance&Accounting, 1994, 21 : 603--612.
  • 10Murray, Matt.Base/Panel Recommends Restrictions On Dealings With High-Risk Institutions [J].Wall Street Journal - Eastern Edition, 1999, 233 (20) : 85--89.

共引文献11

同被引文献90

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部