期刊文献+

对双层规划最优解的进一步研究 被引量:2

The Further Research on the Optimal Solution of Bi-level Programming Problem
下载PDF
导出
摘要 对双层规划BLP(Bilevel Programming)的最优解作了进一步的研究。由于双层规划的最优解一般不是Pareto最优解,本文给出5种有效解的定义,并指出所定义的有效解有更重要的实际意义。 This paper makes further research on the optimal solution of bi-level programming problem. Because the optimal solution of bi-level programming problem is not Pareto optimal solution, this paper presents five definitions of efficient solutions, which have important sense in practice.
出处 《山东科技大学学报(自然科学版)》 CAS 2006年第3期100-102,共3页 Journal of Shandong University of Science and Technology(Natural Science)
关键词 双层规划 PARETO最优 有效解 bi-level programming Pareto optimization efficient solution
  • 相关文献

参考文献3

  • 1J F Bard,J E Falk.An explicit solution to the multi level programming problem[J].Computers and Operations Research,1982,(9):77-100.
  • 2腾春贤,李智慧.双层规划的理论与应用[M].北京:科学出版社,2002.
  • 3袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..

共引文献99

同被引文献17

  • 1赵茂先,高自友.求解线性双层规划的割平面算法[J].北京交通大学学报,2005,29(3):65-69. 被引量:7
  • 2BARD J F. Practical bi-level optimization: algorithms and applications[M]. Boston: Kluwer Academic Publishers,1998.
  • 3JEROSLOW R G. The polynomial hierarchy and a simple model for competitive analysis[J]. Mathematical Programming, 1985,32 (2) : 146-164.
  • 4BEN-AYED O, BLAIR C E. Computational difficulties of bilevel linear programming[J]. Operations Research, 1990,38 (3) :556-560.
  • 5BIALAS W F, KARWAN M H. Two-level linear programming[J], Management Science, 1984,30 (8):1004-1020.
  • 6BARD J F, MOORE J T. A branch and bound algorithm for the bilevel programming problem[J]. Siam Journal of Scientific and Statistical Computing, 1990,18(2) : 35-42.
  • 7LIU G S, HAN J Y, ZHANG J Z. Exact penalty functions for convex bilevel programming problems[J]. Journal of Optimization Theory and Applications, 2001,110(3) : 621-641.
  • 8JEROSLOW R.The polynomial hierarchy and a simple model for competitive analysis[J].Mathematical Programming,1985,32:146-164.
  • 9VICENTE L,SAVARD G,JUDICE J.Descent approaches for quadratic bilevel programming[J].Journal of Optimization Theory and Applications,1994,81:379-399.
  • 10MARCOTTE P,SAVARD G.Bilevel programming:A combinatorial perspective[M] //Graph Theory and Combinatorial Optimization.AVIS D,HERTZ A,MARCOTTE O.New York:Springer,2005:191-217.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部