期刊文献+

负相协随机变量列尾和的重对数律

Laws of the Iterated Logarithm for the Tail Sum of NA Random Variables
下载PDF
导出
摘要 设{X_n,n≥1}为负相协随机变量序列,S=sum from n=1 to∞X_n收敛,本文讨论了部分和S_n=sum from k=1 to n-1 X_k→S的收敛速度,获得了关于尾和U_n=S-S_n的重对数律。 Let {Xn,n≥1) be a sequence of NA random variables, and assume that S=∞↑∑↓(n=1) Xn to S as converges a.s.. We investigate the rate of convergence of the partial sums Sn=(n-1)↑∑↓(k=1) Xk→S, obtain some results for laws of the iterated logarithm for the NA tail sum Un = S - Sn.
作者 刘立新
出处 《工程数学学报》 CSCD 北大核心 2006年第5期827-834,共8页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10071003)
关键词 负相协随机变量 尾和 收敛速度:重对数律 NA squences the tail sum rate of convergence law of the iterated logarithm
  • 相关文献

参考文献10

  • 1Joag-Dev K, Proschan F. Negetive association of random variables with applications[J]. Ann Statist,1983,11:286-295
  • 2Matula P. A note on the almost sure convergence of sums of negatively dependent random variables[J].Statist Probab Lett, 1992,15:209-213
  • 3Su Chun, Zhao Lincheng, Wang Yuebao. Moment inequalities and weak convergence for negatively associed sequences[J]. Science in China (Series A), 1997,40:172-182
  • 4苏淳,王岳宝.同分布NA序列的强收敛性[J].应用概率统计,1998,14(2):131-140. 被引量:59
  • 5Shao Qiman, Su Chun. The law of the iterated logarithm for negatively associated random variables[J].Stochastic Process Appl, 1999,83:139-148
  • 6Shao Qiman. A comparison theorem on maximal inequalities between negatively associated and independent random variables[J]. J Theor Probab, 2000,13:343-356
  • 7董志山,杨小云,刘立新.非平稳NA随机变量满足迭对数律及大数定律的充分条件[J].数学学报(中文版),2002,45(6):1213-1220. 被引量:3
  • 8Chow Y S, Teicher H. Iterated logarithm laws for weighted averages[J]. Z Wahr verw Geb, 1973,26:87-94
  • 9Rosalsky A. Almost certain limiting behavior of the tail series of independent summands[J]. Bull Math Acad Sinica, 1983,11:185-208
  • 10Wittmann R. A general law of iterated logarithm[J]. Z Wahr verw Geb, 1985,68:521-543

二级参考文献13

  • 1Wittmann R., A general law of iterated logarithm, Z. Wahrsch. Verw. Gebiete, 1985, 68: 521-543.
  • 2Joag-Dev K., Proschan F., Negative association of random variables with appilications, Ann. Statist., 1983, 11: 286-295.
  • 3Shao Q. M., Su C., The law of the iterated logarithm for negatively associated random variables, StochasticProcess. Appl., 1999, 83: 139-148.
  • 4Matula P., A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett., 1992, 15: 209-213.
  • 5Liu L. X., The bounded law of iterated logarithm for NA random variables, Acta Math. Appl. Sinica, Submitted for Publication (in Chinese).
  • 6苏淳,科学通报,1997年,42卷,238页
  • 7迟翔,应用概率统计,1997年,13卷,199页
  • 8苏淳,科学通报,1996年,41卷,106页
  • 9苏淳,中国科学.A,1996年,26卷,1091页
  • 10邵启满,应用概率统计,1991年,7卷,174页

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部