摘要
研究了一类向量型时滞脉冲微分方程系统的振动性问题,通过作变最变换,将常系数脉冲微分方程系统变为变系数非脉冲微分方程系统,得到了模型非振动解的渐近性态和方程任意解振动的充分条件,利用留数理论,得到了方程广义振动和广义非振动的充分条件。
A non-linear systems of differential equation with impulse is considered. By taking transform, the uncontinuous impulsive differential equation with constant coefficients is transformed to continuous un-impulsive differential equation with changable coefficients. The sufficient condition for the oscillatory of every solution and the asymptotic behavior of the nonoscillatory solution are obtained. By using Laplace-transform and residue theory, the sufficient conditions for the generic oscillation and nonoscillation of the system are obtained.
出处
《工程数学学报》
CSCD
北大核心
2006年第5期856-860,共5页
Chinese Journal of Engineering Mathematics
基金
西安石油大学科技基金(2005-22)
关键词
脉冲微分方程
振动性
广义振动性
广义非振动性
impulsive differential equation
oscillation
generic oscillation
generic non-oscillation