期刊文献+

一类具有脉冲的向量型时滞微分系统的振动性 被引量:2

The Oscillations of A Class of Delay Differential System with Impulse
下载PDF
导出
摘要 研究了一类向量型时滞脉冲微分方程系统的振动性问题,通过作变最变换,将常系数脉冲微分方程系统变为变系数非脉冲微分方程系统,得到了模型非振动解的渐近性态和方程任意解振动的充分条件,利用留数理论,得到了方程广义振动和广义非振动的充分条件。 A non-linear systems of differential equation with impulse is considered. By taking transform, the uncontinuous impulsive differential equation with constant coefficients is transformed to continuous un-impulsive differential equation with changable coefficients. The sufficient condition for the oscillatory of every solution and the asymptotic behavior of the nonoscillatory solution are obtained. By using Laplace-transform and residue theory, the sufficient conditions for the generic oscillation and nonoscillation of the system are obtained.
出处 《工程数学学报》 CSCD 北大核心 2006年第5期856-860,共5页 Chinese Journal of Engineering Mathematics
基金 西安石油大学科技基金(2005-22)
关键词 脉冲微分方程 振动性 广义振动性 广义非振动性 impulsive differential equation oscillation generic oscillation generic non-oscillation
  • 相关文献

参考文献3

  • 1El-Owaidy H, Mohamed H Y. Linearized oscillation for non-linear systems of delay differential equations[J].J Applied Mathematics and Computaion, 2003,142:17-21
  • 2Widder D V. An introduction to Transform Theory[M]. New York: Academic press, 1971
  • 3Cahlon B, Schmidt D. Generic oscillations for delay differential equations[J]. J Math Anal Appl,1998,223:288-301

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部