期刊文献+

非线性二阶Neumann边值问题的正解 被引量:9

Positive Solutions of Nonlinear Second-order Neumann Boundary Value Problems
下载PDF
导出
摘要 利用度数理论考察了非线性二阶Neumann边值问题的正解。结论表明这个问题可以具有n个正解,只要非线性项在某些有界集上的高度和增长是适当的,其中n是一个任意的自然数。 By using the degree theory, the positive solutions of nonlinear second-order Neumann boundary value problems are considered. The results show that the problems may have n positive solutions provided the heights and growth of nonlinear term are appropriate on some bounded sets, where n is an arbitrary natural number.
作者 姚庆六
出处 《工程数学学报》 CSCD 北大核心 2006年第5期939-942,共4页 Chinese Journal of Engineering Mathematics
关键词 二阶常微分方程 NEUMANN边值问题 正解 存在性 多解性 second-order ordinary differential equation neumann boundary value problem positive solution existence multiplicity
  • 相关文献

参考文献4

二级参考文献18

  • 1Erbe L H,Proc Am Math Soc,1994年,120卷,743页
  • 2Yang Z,湘潭大学自然科学学报,1993年,15卷,增刊,205页
  • 3Hai Dang,J Math Anal Appl,1996年,198卷,35页
  • 4Wang Haiyan,J Diff Eqs,1994年,109卷,1页
  • 5Rachunkva I, Stanke S. Topologyical degree method in functional boundary value problems at resonance[J].Nonlinear Anal,1996;27(3):271-285
  • 6Wang H Y. On the existence of positive solutions for semilinear elliptic equations in the annuls[J]. J Differential equations,1994; 109:1-7
  • 7Guo D J, Sun J X. Calculations and application of toplogic degree[J]. Journal of Mathematics Research and Exposition, 1988;8 (3) :469-480
  • 8Wang H Y. On the existence of positive solutions for semilinear elliptic equations in the annuls [ J ]. J Differential Equations,1994,109(1): 1-9.
  • 9Yao Q L. Positive solutions for eigenvalue problems of fourth-order elastic beam equations [ J ]. Appl Math Letters, 2004,17(2): 237-243.
  • 10姚庆六.THE SINGULAR SECOND ORDER NONLINEAR EIGENVALUE PROBLEM WITH INFINITELY MANY POSITIVE SOLUTIONS[J].Annals of Differential Equations,2001,17(3):268-274. 被引量:6

共引文献57

同被引文献30

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部