期刊文献+

利用边界层理论确定预涂动态膜生物反应器稳定曝气量的试验研究 被引量:5

Experimental Study on Application of the Boundary Layer Theory for Determining Steady Aeration Intensity of Precoated Dynamic Membrane Bioreactor
下载PDF
导出
摘要 研究了膜生物反应器中低浓度活性污泥的流变性,确定当污泥浓度低于8000mg·L^-1时的泥水混合液近似于牛顿流体,进而利用牛顿流体力学中边界层理论计算预涂动态膜(PDM)厚度等于平板膜表面层流边界层厚度时的稳定曝气量.为保证预涂动态膜生物反应器(PDMBR)运行的稳定性,在其运行初期选择满足生物所需最佳溶解氧(DO)3~5mg·L^-1的供氧曝气量,随后逐渐增加到稳定曝气量的运行方式.实验结果表明,此运行方式能较好地提高动态膜的稳定性,在稳定运行的31d内出水COD低于12.48mg·L^-1,平均去除率达到97.49%,NH4^+-N约为5.27mg·L^-1,平均去除率为76.13%,而操作压力仅上升至27kPa.试验后期考察了PDMBR在高于稳定曝气量下运行的稳定性,发现PDM发生脱落,从而证明利用边界层理论确定的预涂类动态膜的稳定曝气量具有一定的应用价值. The rheological behaviour of the low sludge concentration liquor in MBR was investigated and made a conclusion that this liquor approximated to the Newtonian fluid while the concentration of the sludge was less than 8 000 mg· L^- 1. Furthermore, when the laminar flow boundary layer thickness on the surface of flat membrane came up to the thickness of precoated dynamic membrane (PDM), the steady aeration intensity was calculated by using the boundary layer theory in the Newtonian hydrodynamics. In order to ensure the stability of the pre-coated dynamic membrane bioreactor (PDMBR), oxygen supply aeration intensity was chosen to supply the best dissolved oxygen (3-5 mg· L^-1) in the initial stages and gradually increased to the steady aeration intensity. The results indicated that this mode could enhance the stability of PDM. In the experiment period (31d), effluent COD was less than 12.48 mg· L^-1 and its average removal rate was 97.49 %, NH4^+ -N was less than 5.27 mg· L^-1 and its average removal rate was 76.13 %, while the operational pressure just increased to 27 kPa. During the last period of the experiment, the stability of the PDMBR was studied when the aeration intensity was more than the steady aeration intensity and it was found that the precoated layer had been brushed off from the surface of common filter cloth, so this phenomenon proved that using the boundary layer theory could determine steady aeration intensity of PDMBR.
出处 《环境科学》 EI CAS CSCD 北大核心 2006年第10期2003-2008,共6页 Environmental Science
基金 辽宁省科学技术基金项目(20031083)
关键词 预涂动态膜 边界层 曝气量 平板膜 precoated dynamic membrane boundary layer aeration intensity flat membrane
  • 相关文献

参考文献13

  • 1Fan B,Huang X.Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment[J].Environ.Sci.Technol.,2002,36:5245~5251.
  • 2范彬,黄霞,文湘华,于妍.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51-56. 被引量:77
  • 3Kiso Y,Jung Y J,Ichinari T,et al.Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material[J].Water Res.,2000,34(17):4143~4150.
  • 4Galjaard G,Buijs P,Beerendonk E,et al.Pre-coating(EPCE) UF membranes for direct treatment of surface water[J].Desalination,2001,139 (1-3):305 ~ 316.
  • 5张捍民,乔森,叶茂盛,张兴文,杨凤林.预涂动态膜-生物反应器处理生活污水试验研究[J].环境科学学报,2005,25(2):249-253. 被引量:25
  • 6刘乃震,王廷瑞,刘孝良,刘崇建.非牛顿流体的稳定性及其流态判别[J].天然气工业,2003,23(1):53-57. 被引量:18
  • 7Sandra R,Kirsten K,Matthias K.Rheology of activated sludge in membrane bioreactors[J].Eng.Life.Sci.,2002,2(9):269~275.
  • 8邢传宏,钱易,TardieuEric.超滤膜-生物反应器处理生活污水及其水力学研究[J].环境科学,1997,18(5):19-22. 被引量:30
  • 9Lu S G,Imai T,Ukita M,et al.A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products[J].Water Res.,2001,35(8):2038~2048.
  • 10国家环保局.水和废水监测分析方法[M](第三版)[M].北京:中国环境出版社,1989..

二级参考文献23

  • 1国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第3版)[M].北京:中国环境科学出版社,1989..
  • 2刘崇建 刘绘新.判别液体流态准数z值的讨论[J].西南石油学院学报,1981,.
  • 3[1]Belfort R H,Dabis A L,Zydney L. Review-The behavior of suspensions and macromolecular solutions in crossflow microfiltration[J]. J Membr Sci, 1994,96:1 - 58.
  • 4[2]Zhang Boran, Yamamoto K. Floc size distribution and bacterial activities in membrane separation activated sludge processes for small scale wastewater treatment[J]. Wat Sci Tech, 1997,35(6) :37 - 44.
  • 5[3]Lee Jungmin, AhnWY, LeeCH, et al. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Wat Res,2001, 35(10) :2435- 2445.
  • 6[4]Choo K H, Miya A. Approaches to membrane fouling control in anaerobic membrane bioreactors[J]. Wat Sci Tech,2000,41(10 - 11) :363 - 371.
  • 7[5]Tardieu E, Grasmick A, Geaugey V, et al. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment[J]. J Membr Sci, 1999,156:131 -140.
  • 8[6]Defrance L, Michel Y J, Bharat G, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J ]. Bioresource Technology,2000, (73): 105- 112.
  • 9[7]Chang J S, Tsai L J, Vigneswaran C, et al. Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration[J]. Wat Sci Tech,1996,34(9) :133-140.
  • 10Xing C H, Wen X H, Qian Y, et al. Microfiltration membrane-coupled bioreactor for urban wastewater reclamation [ J ]. Desalination,2001, 141(1) :63-73.

共引文献182

同被引文献108

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部