期刊文献+

半线性椭圆方程组的一个刘维尔型定理

A Liouville-Type Theorem of Some Semilinear Elliptic Systems
原文传递
导出
摘要 本文研究如下形式的半线性椭圆方程组:-Δu=f1(v),-Δv=f2(u),x∈Rn(n≥3).在一定的假设下,得到了该方程组的一个刘维尔型定理,不同作者的两个结果成为该定理的推论. This paper treats of the second order semilinear elliptic system of the form -△u=f1(v),-△u=f2(u),x∈R^n(n≥3). Under the assumptions of fi (i = 1,2), we obtain a Liouville-type theorem of this system.
作者 洪莉 王为民
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第5期1053-1060,共8页 Acta Mathematica Sinica:Chinese Series
基金 暨南大学珠海学院优秀人才基金资助项目
关键词 半线性椭圆 移动球面 极值原理 semilinear elliptic moving spheres maximum principle
  • 相关文献

参考文献15

  • 1De Figueiredo D. G. and Felmer P. L, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Sup.Pisa, 1994, ⅩⅪ: 387-397.
  • 2Busca J. and Manasevich R, A Liouville-type theorem for Lane-Emden systems, Indiana Univ. Math. J,2002, 51:37-51.
  • 3Lin C. S, A classification of solutions of a conformally invariant fourth order equation in Rn, Comment.Math. Helv, 1998, 73: 206-231.
  • 4Mitidieri E, Non-existence of positive solutions of semilinear elliptic systems in R^n, Differential Integral Equations, 1996, 9:465-479.
  • 5Serrin J. and Zou H, Existence of positive solutions of Lane-Emden systems, Atti Sin. Mat. Fis. Univ.Modena, 1998, 46(Suppl): 369-380.
  • 6Serrin J. and Zou H, Non-existence of postitive solutions of semilinear elliptic systems, Discourses in Mathematics and its Applications 3, Department of Mathematics, Texas A &: M University College Station, (Texas),1994, 55-68.
  • 7Serrin J. and Zou H, Non-existence of postitive solutions of Lane-Emden systems, Diff. Int. Eq, 1996, 9:635 653.
  • 8Souto M. A, Sobre a existencia de solucSes positivas para sistemas cooperativos nao lineares, PhD Thesis,(Unicamp), 1992.
  • 9Peletier L. A. and Vorst R. C. A. M. van der, Existence and non-existence of positive solutions of non-linear elliptic systems and the biharmonic equation, Differ. Integral Equ, 1992, 5(4): 747-767.
  • 10Pucci P. and Serrin J, A general variational identity, Indiana Univ. Math. J, 1996, 35(3): 681-703.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部