期刊文献+

Busemann-Petty问题的对偶均质积分形式

Dual Quermassintegral Versions of Busemann-Petty Problem
原文传递
导出
摘要 本文主要建立了凸体几何中Busemann-Petty问题的一个对偶均质积分形式,并将Funk截面定理推广到了对偶均质积分形式. In this paper, we give a dual quermassintegral version of Busemann-Petty problem in Geometric convexity, and extend the Funk's section theorem to the dual quermassintegral.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第5期1127-1132,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10271071)
关键词 Busemann—Petty问题 相交体 对偶均质积分 Busemann-Petty problem intersection bodies dual quermassintegral
  • 相关文献

参考文献18

  • 1Busemann H, Petty C. M, Problems on convex bodies, Math. Scand, 1956, 4: 88-94.
  • 2Larman D. G, Rogers C. A, The existence of a centrally symmetric convex body with central sections that are unexpectedly small,Mathematike, 1975, 22: 164-175.
  • 3Ball K. M, Some remarks on the geometry of convex sets, in Geometric Aspects of Functional Analysis, ed.by J. Lindenstrauss and V. D. Milman, Lecture Notes in Mathematics 1317. Heidelberg: Springer, 1989,224-231.
  • 4Giannopoulos A. A, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika, 1990, 37: 239-244.
  • 5Bourgain J, On the Busemann-Petty problem for perturbations of the ball, Geom. Functional Anal, 1991,1: 1-13.
  • 6Papadimitrakis M, On the Busemann-Petty problem about convex, centrally symmetric bodies in R^n, Mathematike, 1992, 39: 258-266.
  • 7Gardner R. J, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc, 1994, 342:435-445.
  • 8Lutwak E, Intersection bodies and dual mixed volumes, Advances in Math, 1988, 71: 232-261.
  • 9Gardner R. J, On the Busemann-Petty problem concerning central sections of centrally symmetric convex bodies, Bull. Amer. Math. Soc, 1994, 30: 222-226.
  • 10Gardner R. J, A positive answer to the Busemann-Petty problem in three dimensions, Annals of Math,1994, 140: 435-447.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部