摘要
本文研究单叶函数相邻系数模之差的增长问题,设f(z)∈S, 0<λ<1.当f为Bazilevic函数时,得到||Dn+1|-|Dn||的准确的阶的估计.
This paper studies the relative growth of adjacent coefficients of a univalent function. For the function 设f(z)∈S,ψ(z)=[f(z)/z]λ=1+∑n=1^∞Dn(λ)z^n,0〈λ〈1 when f is Bazilevic function, we obtain the exact estimate for the order of||Dn+1|-|Dn||
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第5期1195-1200,共6页
Acta Mathematica Sinica:Chinese Series