期刊文献+

硅提高水稻抗镉毒害机制的研究 被引量:74

Research on the Mechanism of Silica Improving the Resistance of Rice Seedlings to Cd
下载PDF
导出
摘要 通过水培试验,主要从硅对镉的分布、镉的化学形态和过氧化物酶活性的影响以及与硅结合蛋白的关系等方面研究了硅减轻镉毒害的机制。结果表明,施硅能显著抑制镉向地上部的运输,使质外体运输途径的运输量减少了36%;加硅也降低了质外体中不同形态镉的含量,特别是结合态的镉;施硅显著降低了镉毒害所诱导的过氧化物酶活性,这说明加硅缓解了高浓度镉对水稻的毒害作用;免疫细胞化学定位显示硅结合蛋白主要分布在水稻根系表皮下的纤维层细胞及内皮层细胞附近,此部位是硅积累的主要部位,也是离子在质外体运输的关键入口,这从分子水平上解释了加硅可降低质外体途径的运输量。 Effect of silicon (Si) on alleviation of cadmium (Cd) toxicity to rice seedlings grown hydroponically under the toxic levels of Cd was investigated with special reference to the effect on Cd distribution, chemical forms of Cd, peroxidase activity and the relation with silicabinding protein. Si added significantly restricted the transport of Cd from roots to shoots and reduced the apoplastic transportation by 36%. Si decreased the concentration of Cd in three chemical forms in the intercellular washing fluid, especially DTPA-extractable Cd. We also found Si decreased the peroxidase activity induced by the toxicity of Cd, indicating that Si could reduce the toxicity of Cd to rice seedlings. Immunocytochemistry localization showed the silica-binding protein was mainly deposited in the vicinity of the fiber cell under the root epidermis and the endodermis, which were the main deposition positions of Si and also the critical entrance of ion in the apoplastic transport, interpreting why Si could reduce the apoplastic transportation from the molecular level.
出处 《农业环境科学学报》 CAS CSCD 北大核心 2006年第5期1112-1116,共5页 Journal of Agro-Environment Science
基金 国家自然科学基金项目(30170175和30471034)
关键词 细胞化学定位 PTS 水稻 硅结合蛋白 cadmium immunocytochemistry localization PTS rice (Oryza sativa L.) silica silica-binding protein
  • 相关文献

参考文献24

  • 1Epstein E, Silicon Annu Rev. Plant Physiol[J]. Plant Mol Biol, 1999, 50: 641-664.
  • 2Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Sci Plant Nutr, 2004, 50:11-18.
  • 3Horiguchi T. Mechanism of manganese toxicity and tolerance of plants.Ⅳ. Effect of silicon on alleviation of manganese toxicity of rice plants[J].Soil Sci Plant Nutr, 1987, 34: 65-73.
  • 4Kidd P S, Llugany M, Poschenrieder C, et al. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.) [J]. J Exp Bot, 2001, 52:1339-1352.
  • 5Rogalla H, Romheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L[J]. Plant Cell Environ, 2002, 25:549-555.
  • 6Iwasski K, Matsumura A. Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa) [J]. Soil Sci Plant Nutr, 1999, 45: 909-920.
  • 7Neumann D, Zurnieden U. Silicon and heavy metal tolerance of higher plants[J]. Phytochemistry, 2001, 56: 685-692.
  • 8Neumann D, Nieden U Z, Schwieger W, et al. Heavy metal tolerance of Minuartis Verna[J].J Plant Physiol, 1997, 151: 101-108.
  • 9Iwasaki K, Maier P, Fecht M, et al. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata L. walp) [J]. Plant Soil, 2002,238: 281-288.
  • 10Hammond K E, Evans D E, Hodson M J. Aluminum/silicon interaction in barley (Hordeum vulgare L.) seedlings[J]. Plant Soil, 1995, 173: 89-95.

二级参考文献18

  • 1Epstein E. Silicon. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:641~664.
  • 2Ma J F, Miyake Y, Takahashi E. Silicons as a benefical element for crop plants. In: Datonoff L, Komdorfer G, eds. Silicon in Agriculture. New York: Elsevier Science, 2001.17~39.
  • 3Richmond K E, Sussman M. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology, 2003, 6:268~272.
  • 4Li W B, Shi X H, Wang H, et al. Effect of silicon on ultraviolet-B resistance ofrice leaves. Acta Bot Sin, 2004, 46 (6): 691~697.
  • 5Exley C, Korchazhkina O. The association of aluminium and beta amyloid in Alzheimer's disease. In: Exley C, eds. Aluminium and Alzheimer's Disease. The Netherlands: Elsevier Science, 2001.421~433.
  • 6Aghagla-Dohnani A, Noziere P, Graillard-Martinie B, et al. Effect of silica content on rice straw ruminal degradation. J Agri Sci, 2003,140:183~192.
  • 7Kroger N, Deutzmann R, Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science,1999, 286 (5442): 1129~1132.
  • 8Kroger N, Lorenz S, Brunner E, et al. Self-assembly of highly phosphorylated silaffins. Science, 2002, 298 (5593): 584~586.
  • 9Kroger N, Poulsen N, Sumper M. Biosilica formation in diatoms:Characterizatio of native silaffin-2 and its role in silica morphogenesis. Pro Natl Acad Sci USA, 2003, 100 (21):12075~12080.
  • 10Cha J N, Galen D S, Morse D E, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypetides. Nature,2000, 403:289~292.

共引文献130

同被引文献1195

引证文献74

二级引证文献907

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部