期刊文献+

改进的自适应分组个体重构免疫算法

Immune Algorithm of an Improved Adaptive Grouped Individual Reconstruction
下载PDF
导出
摘要 针对免疫算法收敛速度慢,有可能陷入局部寻优情况,提出了一种改进的自适应分组个体重构免疫算法.在个体重构的实现上采用了分组进行,同时对重构算法进行了合理的改进,既保证了收敛速度,同时也保证了全局寻优的过程.仿真实验也表明了这一改进算法在收敛速度和寻优能力方面较原算法有较大的改善. An improved adapative grouped individual reconstruction immune algorithm is presented,in allusion that immune algorithm has slow convergence velocity and may trap into local search. The improved algorithm uses group technique in individual reconstruction procedure and carries on rational improvement on the realization of algorithm. It not only accelerates convergence velocity but also takes advantage in global search capability. The statistical experiment results demonstrate that the algorithm proposed do better than other immune algorithm.
出处 《兰州交通大学学报》 CAS 2006年第4期83-86,共4页 Journal of Lanzhou Jiaotong University
基金 兰州交通大学大学生科研立项基金项目(DXS-2006-19)
关键词 免疫算法 疫苗提取 疫苗接种 个体重构 超变异 immune algorithm vaccine extration vaccine inoculation individual reconstruction hyper-mutation
  • 相关文献

参考文献6

  • 1张乐,陆金桂.改进的免疫算法求解TSP问题[J].计算机工程与设计,2005,26(4):978-980. 被引量:10
  • 2杨孔雨,王秀峰.自适应多模态免疫进化算法的研究与实现[J].控制与决策,2005,20(6):717-720. 被引量:12
  • 3李艳君,吴铁军.用于求解复杂优化问题的新型免疫算法[A].IEEE Internation Conference on Intelligent Control and Automation[C].2004.2 279-2 283.
  • 4Yong Chen,Xiyue Huang.An optimization method based on chaotic immune evolutionary algorithm[A].ICNC[C].2005,LNCS 3611:890-894.
  • 5Guo Zilong,Wang Sun'an,Zhuang Jian.A novel immune evolutionary algorithm incoporating chaos optimization[J].Pattern Recognition Letters 27(2006)2-8.
  • 6葛红,毛宗源.免疫算法[A].IEEE Word Congress on Intelligent Control and Automation[C].2001.1 784-1 787.

二级参考文献17

  • 1刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 2Goldberg D E, Richardson J. Genetic algorithms with sharing for multi-modal function optimization[A]. Proc of the 2nd lnt Conf on Genetic Algorithms [C]. NJ:Lawrence Erlbaum, 1987: 41-49.
  • 3徐宗本 张讲社 郑亚林.计算智能中的仿生学[M].北京:科学出版社,2003.36-42.
  • 4Fukuda T, Mori K, Tsukiyama M. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm[A]. Artificial Immune Systems and Their Applications [C]. Berlin: Spring-Verlag, 1999: 210-220.
  • 5Lydyard P M, Whelan A, Fanger M W. Instant notes in immunology[M]. Beijing: Science Press, 2001: 1-40.
  • 6Farmer J D, Packard N H, Perelson A S. The immune system adaptation and machine learning[J]. Physica,1986, 22(D):187-204.
  • 7Tien-An Yang Shih, Eric Meffre, Mario Roederer, et al. Role of BCR affinity in T cell-dependent antibody responses in vivo [J]. Nature Immunology,2002,3(6): 570-575.
  • 8Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning [J]. Physical D, 1986, 22187-204.
  • 9Forrest S, Hofmeyr S A. Immunology as information processing[A]. Segeland Coheneds. Design Principles for the Immune System and Other Distributed Autonomous Systems [C]. USA: Oxford University Press, 2000.
  • 10Jeme NK. Towards a network theory of the immune system [J].Annual Immunology, 1974, 125: 373-389.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部