期刊文献+

Banach空间中关于H-增生的多值隐拟变分包含

H-accretive operators and resolvent operator technique for solving multi-valued implicit quasi variational inclusions in Banach spaces
原文传递
导出
摘要 引入和研究了定义在Banach空间内一类隐拟变分包含问题,借助预解算子技巧,构造了这类问题解的新的迭代算法,并且证明了解的存在性定理和收敛定理. The purpose is to introduce and study a class of multi-valued implicit quasi variational inclusions with H - accretive operators in Banach spaces. By using the resolvent operator technique, some new iterative algorithms are constructed and some existence theorem of solutions and the convergence of iterative approximation for solving this kind of H - accretive multi-valued implicit quasi variational inclusions are established.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期625-629,共5页 Journal of Fuzhou University(Natural Science Edition)
关键词 多值隐拟变分包含 BANACH空间 算法 H-增生算子 multi-valued implicit quasi variational inclusions Banach spaces algorithm H - accretive operator
  • 相关文献

参考文献10

  • 1Chang S S. Some problems and results in the study of nonlinear analysis[J]. Nonlinear Anal TMA, 1997, 30:4 197 - 4 208.
  • 2Fang Y P, Huang N J. H - accretive operators and resolvent operator technique for solving variational inclusions in Banach space[J]. Applied Mathematics Letters, 2004, 17: 647- 653.
  • 3Agarwal R P, Cho Y J, Huang N J. Sensitivity analysis for stro ngly nonlinear quasivarlational inclusions[J]. Appl Math Lett,2000, 13(6): 19 - 24.
  • 4Noor M A. Implicit resolvent dynamical systems for quasi variational inclusions[J].Math Anal Appl, 2002, 269 : 216 - 226.
  • 5Noor M A. Three-step approximation schemes for multi-valued quasi variational inclusions[J].Nonliear Funct Anal Appl, 2001, 6(3) : 383 - 394.
  • 6Moseo U. Implicit variational problems and quasi variational inequalities~J]. Lecture Notes Math, 1976, 543:83 - 126.
  • 7Noor M A. Multl-valued quasi variational inclusions and implicit resolvent equations[I]. Nonlinear Anal TMA, 2002, 48(2) : 159- 174.
  • 8Nadler S B. Multi-valued contraction mappings[J].Pacific J Math, 1969, 30:475 -488.
  • 9张石生.Banach空间中的多值拟变分包含[J].应用数学和力学,2004,25(6):572-580. 被引量:7
  • 10丁体明.Banach空间内一类涉及广义m-增生映象的变分包含[J].四川大学学报(自然科学版),2004,41(3):483-485. 被引量:2

二级参考文献17

  • 1Noor M A. Set-valued quasi variational inequalities[ J]. K J Comput Appl Math, 2000, 7:101-113.
  • 2Noor M A. Three-step approximation schemes for multivalued quasi variational inclusions [ J ]. Nonlinear Funct AnalAppl,2001,6(3 ):383-394.
  • 3Noor M A. Two-step approximation schemes for multivalued quasi variational inclusions[ J]. Nonlinear Funct AnalAppl,2002,7(1): 1-14.
  • 4Noor M A. Multivalued quasi variational inchusions and implicit resolvent equations [ J]. Nonlinear Anal TMA ,2002,48(2): 159-174.
  • 5Chang S S, Cho Y J, Lee B S, et al. Generalized set-valued variational inclusions in Banach spaces [J]. J Math Anal Appl, 2000,246:409-422.
  • 6Chang S S. Set-valued variational inclusions in Banach spaces[ J ] . J Math Anal Appl,2000,248:4 38-454.
  • 7Chang S S, Kim J K, Kim K H. On the existence and iterative approximation problems of solutions for set-valued variational inchusions in Banach spaces[J]. JMath Anal Appl,2002,268: 89-108.
  • 8Barbu V. Nonlinear Semigroups and Differential Equations is in Banach Spaces [ M ] . Leyden: Noordhaff, 1979.
  • 9Noor M A. Generalized set-valued variational inclusions and resolvent equations [ J ]. J Math Anal Appl, 1998,228: 206-220.
  • 10Chang S S. Some problems and results in the study of nonlinear analysis[J]. Nonlinear Anal TMA,1997,30:4197-4208.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部