摘要
Energy deposition at the interface of explosive welding is analyzed by symmetrical impaction model of uneompressible liquid. Equation of energy in the flow field of explosive welding is deduced and the distribution of temperature in the flow field is solved by finite difference method on the basis that the adiabatic compression is considered. The results show that the temperature rise increases with the increasing of the velocity of approaching flow and impact angle, under appropriate velocity of approaching flow and impact angle the temperature rise near the welding interface will be higher than the melting point of the material and the thin melted layer is localized on the region near welding interface.
Energy deposition at the interface of explosive welding is analyzed by symmetrical impaction model of uneompressible liquid. Equation of energy in the flow field of explosive welding is deduced and the distribution of temperature in the flow field is solved by finite difference method on the basis that the adiabatic compression is considered. The results show that the temperature rise increases with the increasing of the velocity of approaching flow and impact angle, under appropriate velocity of approaching flow and impact angle the temperature rise near the welding interface will be higher than the melting point of the material and the thin melted layer is localized on the region near welding interface.
基金
Support of this research is provided by National Natural Science Foundation of China (No.10172025).