期刊文献+

基于方向气球力活动轮廓模型的图像分割 被引量:3

Image Segmentation Using Directional Balloon Force Active Contour Model
下载PDF
导出
摘要 针对传统参数活动轮廓模型存在对轮廓线初始位置敏感的缺点,提出了方向气球力活动轮廓模型并应用于MRI图像分割。该模型利用底层图像分割的结果确定外力的方向,使气球力方向始终指向目标边界,引导轮廓线变形。当轮廓线运动到目标边界附近时,在高斯势力作用下继续变形,完成图像高层分割。实验结果表明,该模型与轮廓线初始位置无关,能实现MRI图像的自动分割。 Traditional parametric active contour model is sensitive to the initial position.An improved external force for the active contour, called directional balloon force is proposed to address problem associated with initialization and is used to segment MRI images. In this model the direction of the force is decided by the results of low-level segmentation and always points to object boundary to make the contour deform. In the vicinity of object boundary, Gaussian potential force drives the contour towards boundary and highlevel segmentation is implemented. The experiments of segmenting left ventricle MRI images show that this model be independent of the initial position and can segment image automatically.
出处 《微计算机信息》 北大核心 2006年第10X期301-303,共3页 Control & Automation
基金 江苏省教育厅自然科学基金资助项目(2002316)
关键词 图像分割 方向气球力 活动轮廓模型 高斯势力 image segmentation directional balloon force active contour model Gaussian potential force
  • 相关文献

参考文献8

  • 1Kass M,Witkin A,Terzopoulos D.Snake:Active contour models[J].International Journal of Computer Vision.1988,1(4):321-331.
  • 2罗希平,田捷,诸葛婴,王靖,戴汝为.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312. 被引量:233
  • 3Cohen L D.On active contour models and balloons[J].CVGIP image understanding.1991,53(2):211-218.
  • 4Zugaj D and Lattuati V.A New Approach of Color Images Segmentation Based on Fusing Region and Edge Segmentation Outputs[J].Pattern Recognition.1998,31(2):105-113.
  • 5Wu Heien_Hsum,Liu Jyh-Charn,Charles Chui.A wavelet frame based image force model for active contouring algorithms[J].IEEE Transactions on Image Processing.2000,9(11):1983-1987.
  • 6Xu C,Prince J L.Snakes,shapes and gradient vector flow[J].IEEE Transactions on Imaging Processing.1998,7(3):359-369.
  • 7Cohen L D,Cohen I.Finite element methods for active contour models and balloons for 2-D and 3-D Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1993,15 (11):1131-1147.
  • 8门蓬涛,张秀彬,张峰,孙志旻,吴炯.基于NMI特征的目标识别与跟踪[J].微计算机信息,2004,20(3):24-26. 被引量:16

二级参考文献18

  • 1Marr D.视觉计算理论[M].北京:科学出版社,1988.51-80.
  • 2Zhu S C,International Conference on COmputer Vision,1998年,847页
  • 3Liang P,Proceeding of the International Conference on Computer Vision,1998年,193页
  • 4Wang J P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,619页
  • 5Wang Y P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,10期,1040页
  • 6Wu M F,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,858页
  • 7Cheng H D,Pattern Recognition,1998年,31卷,7期,857页
  • 8Li L,Pattern Recognition,1997年,30卷,5期,743页
  • 9Liang K H,Pattern Recognition,1997年,30卷,5期,719页
  • 10Deng W,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,4期,432页

共引文献247

同被引文献19

  • 1马华,王清,张永.基于改进FCM的医学图像分割[J].微计算机信息,2006,22(03S):241-242. 被引量:13
  • 2王元全,贾云得.梯度矢量流Snake模型临界点剖析[J].软件学报,2006,17(9):1915-1921. 被引量:13
  • 3李庆,杨俊峰,江汉红,梁艳.基于Snake模型的图像分割技术[J].武汉理工大学学报(信息与管理工程版),2006,28(11):168-171. 被引量:11
  • 4[3]Osher S.Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on the Hamilton-Jacobi formulation[J].Journal of Computational Physics.1988,79(I):12-49
  • 5[4]D.Adalsteinsson and J.A.Sethian.A.Fast Level Set Method for Propagation Interfaces.Journal of Computational Physics,1995,118(2):269-277
  • 6[5]D.Adalsteinsson and J.A.Sethian,The fast construction of extension velocities in level set methods[J].J.Comput.Phys.1999,148:2-22.
  • 7[6]Gomes J.Faugeras O.Reconciling Distance Functions and Level Sets[J].Journal of Visional Communication and Image Representation,2000,209-233
  • 8[7]D.M.Titterington,A.F.M.Smith,U.E.Markov.Statical analysis of finite mixture distributions.New York:John Wiley,1985.
  • 9[8]Redner JA,Walker AK.Mixture density,maximumlikelihood andthe EM algorithm[J].SIAM Review,1984,26(2):195~239.
  • 10[9]Weickert.J Coherence-enhance diffusionfiltering.The International Journal of Computer Vision,1999,10(3):111~127

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部