期刊文献+

关于( H,η)单调算子的非线性集值算子包含的迭代算法(英文) 被引量:3

An Iterative Algorithm for Nonlinear Set-Valued Operator Inclusions Involving (H, η)-Monotone Operators
下载PDF
导出
摘要 引进了关于H和G的强单调性概念,在Hilbert空间中研究了新的一类关于( H,η)单调算子的非线性集值算子包含.应用与( H,η)单调算子相关的预解算子技巧提出了一个迭代算法逼近其解,并且讨论了由此算法产生的迭代序列的收敛特征. The concept of strongly monotonicity with respect to H and G and a new kind of nonlinear set-valued operator inclusions (NSVOI) with (H, η)-monotone operators are introduced in Hilbert space. Using resolvent operator technique associated with an (H, η)-monotone operator, the authors suggest a new iterative algorithm for approximating a solution to (NSVOI) and also discuss the convergence criteria of iterative sequences generated by the algo- rithm.
作者 余显志 邓磊
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期6-9,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471113) 重庆市科委自然科学基金资助项目(CSTC,2005BB2097) .
关键词 (H η)单调算子 预解算子技巧 算子包含 迭代算法 (H, η) -monotone operator resolvent operator technique operator inclusion iterative algorithm
  • 相关文献

参考文献6

  • 1Fang Y P, Huang N J. A New System of Variational Inclusions with (H,η) -Monotone Operator in Hilbert Spaces [J].Comput Math Appl, 2005, 49:365-374.
  • 2Huang N J, Fang Y P. A New Class of General Variational Inclusions Involving Maximal η-Monotone Mapping [J].Publ Math Debrecen, 2003, 62(1-2): 83-98.
  • 3Fang Y P, Huang N J. H Monotone Operator and Resolvent Operator Technique for Variational Inclusions [J]. Appl Math Comput, 2003, 145:795-803.
  • 4韩泽,方亚平.含H-单调算子的广义变分包含(英文)[J].四川大学学报(自然科学版),2004,41(2):279-283. 被引量:3
  • 5金茂明.完全广义非线性含参隐拟变分包含的灵敏性分析(英文)[J].西南师范大学学报(自然科学版),2004,29(5):729-733. 被引量:4
  • 6Glowinski R, Lions J L, Tremolieres R. Numerical Analysis of Variational Inequalities [M]. Amsterdam: North-Holland, 1981.

二级参考文献13

  • 1[1]Baiocchi C, Capeo A. Variational and quasi variational inequalities, application to free boundary problems[ M]. New York/London: Wiley, 1984.
  • 2[2]Fang Y P, Huang NJ. Appl. Math. Comput, 2003, 145:795-803.
  • 3[3]Giannessi F, Maugeri A. Variational inequalities and network equilibrium problems[M]. New York: Plenum, 1995.
  • 4[4]Glowinski R. Numerical methods for nonlinear variational problems[M]. Berlin: Springer-Verlag, 1984.
  • 5[5]Glowinski R, Lions J L, Tremolieres R. Numerical analysis of variational inequalities[M]. Amsterdam: North-Holland Publishing House, 1981.
  • 6[6]Huang N J, Fang Y P. Publ. Math. Debrecen, 2003, 62:83-98.
  • 7[7]George X. Yuan Z. KKM theory and applications in nonlinear analysis[M]. New York:Marcel Dekker, 1999.
  • 8Adly S. Perturbed Algorithm and Sensitivity Analysis for a General Class of Variational Inclusions [J]. J Math Anal Appl, 1996, 201:609 - 630.
  • 9Agarwal B P, CHo Y J, Huang N J. Sensitivity Analysis for Strongly Nonlinear Quasi-Variational Inclusions [J]. Appl Math Lett,2000, 13: 19-24.
  • 10Xu H K. Inequalities in Banach Spaces with Applications [J]. Nonlinear Anal, 1991, 16(2): 1127 - 1138.

共引文献5

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部