期刊文献+

带逆平方势的非线性Shrdinger方程整体吸引子及其维数估计(英文)

The Global Attractor and Its Dimensions for the Nonlinear Schrdinger Equation with Inverse-Square Potential
下载PDF
导出
摘要 研究了带逆平方势的非线性Shrdinger方程的长时间动力学行为,证明了整体吸引子的存在性,并给出了整体吸引子的Hausdorff维数和Fractal维数的上界估计. In this paper, the long time behavior of solutions for the nonlinear Schroedinger equation with inversesquare potential are studied. The existence of the global attractor is proved, and the estimates of the upper bounds of Hausdorff and Fractal dimensions of the global attractors are obtained.
作者 何素芳
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期37-42,共6页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 非线性Shroedinger方程 整体吸引子 HAUSDORFF维数 Fractal维数 nonlinear Schrodinger equation global attractor Hausdorff dimensions Fractal dimensions
  • 相关文献

参考文献7

二级参考文献21

  • 1Chueshouv I D. Global attractors for non-linear problem of mathematical physics[ J ]. Uspekhi Math Nauk, 1993,48:135 - 162.
  • 2Henry D. Geometric Theory of Semilinear Parabolic Differential Equations[M]. New York, Berlin:Springer-Verlag, 1981.
  • 3Hale J K. Asymptotic Behavior of Dissipative Systems[M]. Providence RI:Am Math Soc. 1988.
  • 4Stuart A M. Theory and Numerics of Ordinary and Partial Differential Equations[M]. Oxford: Oxford Univ Press, 1995.
  • 5Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics[ M]. New York: Springer-Verlag, 1988.
  • 6Harau S A. Attractors of asymptotically compact processes and applications to non-linear partial differential equations[J]. Comm Partial Differential Equations, 1988,13:1383 - 1414.
  • 7Chepyzhov V V, Vishik M I. Attractors af non-autonmous dynamical systems and their dirmension[J]. J Math Pures Appl.1994.73:279- 333.
  • 8Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems[J]. Philos Trans R Soc A,1972,272: 47 - 78.
  • 9Zhao H J, Xuan B J. Existence and convergence of solutions for the generalized BBM-Burgers equations with dissipative term[J]. Nonlinear Analysis, 1993,20:1835 - 1850.
  • 10Ren Yongtai,Han Li.The Predator-prey Model with Two Limit Cycles[J].ACTA Math Appl Sinica,1989,5(1):30-32.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部