期刊文献+

求解弹性力学问题的有理单元法 被引量:7

Rational element method for solving elastic problems
下载PDF
导出
摘要 传统的位移有限元法采用多项式形式的位移试函数,对于边数大于4的多边形单元,构造满足单元间协调性要求的多项式形式位移插值函数是一件困难的工作。本文利用逆距离权插值的思想并考虑到单元节点的分布,建立了边数大于4多边形单元上的有理函数形式的形函数。利用有理试函数,采用Galerkin法推导出求解平面弹性力学问题的有理单元法。采用有理单元法求解弹性力学问题,求解区域根据需要可以划分为任意多边形单元,极大地提高了网格划分的灵活性。有理单元法不依赖等参变换,不同单元的形函数表达形式统一,方便计算程序的编写。 In this paper by combining the ideas of inverse distance weighted interpolation and considering element nodes distribution, the shape functions of rational function forms are constructed on a polygonal element. The rational trial functions are automatically to ensure interelement compatibility. Adopting Galerkin method and rational trial function, the rational element method for solving elastic problems is derived. The computing domain could be divided into arbitrary polygonal elements. So it is very flexible in grid generation. The rational element method is independent of isoparametric transformation. Rational shape function expressions of different edge-number elements are similar in forms, so it is easy to deal with the program.
作者 王兆清 冯伟
出处 《计算力学学报》 EI CAS CSCD 北大核心 2006年第5期611-616,共6页 Chinese Journal of Computational Mechanics
基金 山东建筑大学科研基金资助项目
关键词 弹性力学 多边形单元 有理函数形函数 有理函数插值 有理单元法 数值方法 elasticity problem polygonal element ratioanl shape functions rational functioninterpolation rational element method
  • 相关文献

参考文献10

  • 1田砾,杨明,孙雪飞,董毓利.钢纤维混凝土细观结构数值模拟自动生成技术——多边形骨料生成与有限元网格的剖分[J].青岛建筑工程学院学报,1998,19(4):1-5. 被引量:4
  • 2GHOSH S, MALLETT R L. Voronoi cell finite elements[J ]. Computers& Structures, 1994,50 (1) : 33-46.
  • 3ZHANG J, KATSUBE N. A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions[J]. Finite Elements in Analysis and Design, 1995,19 : 45-55.
  • 4EUGENE L Wachspress. A Rational Finite Element Basis[M]. New York: Academic Press, Ine, 1975.
  • 5范亚玲,张远高,陆明万.二维任意多边形有限单元[J].力学学报,1995,27(6):742-746. 被引量:20
  • 6GAUTAM Dasgupta. Interpolants within convex polygon: Wachspress shape functions [J]. Journal ofAerospace Engineering, 2003,16(1) : 1-8.
  • 7Elisabeth Anna Malsch, Gautam Dasgupta. Interpolations for temperature distributions: A method for all non-concave polygons[J]. International Journal of Solid and Structures, 2004,41(8): 2165-2188.
  • 8王兆清,冯伟.Delaunay多边形单元的有理函数插值格式[J].力学季刊,2004,25(3):375-381. 被引量:16
  • 9SUKUMAR N, MORAN B, BELYTSCHKO T. The natural element method in solid mechanics [J ]. International Journal for Numerical Methods in Engineering. 1998,43: 839-887.
  • 10SUKUMAR N, CHOPP D L,MOES N,et al. Modelling holes and inclusions by level sets in the extended finite-element method [J ]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 6183-6200.

二级参考文献16

  • 1钱觉时,邹定祺.“数值砼”-砼材料细观结构的模拟[J].重庆建筑工程学院学报,1994,16(2):37-45. 被引量:5
  • 2Ghosh, S. Mallett R L. Voronoi Cell finite elements[J]. Computers & Structures, 1994, 50(1), 33-46.
  • 3Ghosh, S. Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J]. Comput Methods Appl Mech Engrg, 1995, 121, 373-409.
  • 4Ghosh S. , Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi Cell finite element method[J]. Int J Structures, 1995, 27-62.
  • 5Belikov V V, Ivanov V D, Kontorovich V K, Korytnik S A, Semenov A Y. The non-Sibson interpolation: a new method of interpolation of the values of a function on an arbitrary set of Doints[J]. Computational Mathematics and Mathematical Physics, 1997, 37(1) :9-15.
  • 6Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics. 2000, 32:371-387.
  • 7Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system of points in Euclidean space[C]. In: 15^th IMACS World Congress. Vol.2, Numerical Mathematics, Wissen Techn Verlag, Berlin, 1997, 237-242.
  • 8Kokichi Sugihara. Surface interpolation based on new local coordinates[J]. Computer-Aided Design, 1999, 31:51-58.
  • 9Hisamoto Hiyoshi, Kokiehi Sugihara. Two generalizations of an interpolant based Voronoi diagrams[J]. International Journal of Shape Modeling, 1999, 5(2):219-231.
  • 10Hisamoto Hiyoshi. Study on interpolation based on Voronoi diagrams[D]. PhD Dissertation, University of Tokyo, Tokyo, 2000.

共引文献30

同被引文献85

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部